MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examiner: Sven Raum Instructor: Corentin Léna

1. Systems of differential equations (20 points) Find the general solution of the system of differential equations

$$X' = AX$$

where A is the matrix

$$\begin{pmatrix} -2 & 1 & -1 \\ -3 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}.$$

Idea of solution. The matrix A is diagonalisable and after a calculation we find that its eigenvectors are

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ \begin{pmatrix} 0\\1\\1 \end{pmatrix} \ \text{ and } \ \begin{pmatrix} -1\\-1\\1 \end{pmatrix}.$$

Their eigenvalues are -1, 1 and 0, respectively. As a consequence the general solution to X' = AX is given by

$$X = ae^{-t} \begin{pmatrix} 1\\1\\0 \end{pmatrix} + be^t \begin{pmatrix} 0\\1\\1 \end{pmatrix} + c \begin{pmatrix} -1\\-1\\0 \end{pmatrix}.$$

2. Higher order differential equations (20 points)

Solve the differential equation with boundary conditions

$$f''(x) + f'(x) - 2f(x) = 3e^x - 18xe^{-2x}$$
$$f(0) = 0$$
$$f'(-1) = -6e^2.$$

Idea of solution. We find the general solution to the homogeneous equation f''(x) + f'(x) - 2f(x) = 0and then use a well-chosen Ansatz to solve the inhomogeneous problem, possibly taking resonance cases into account.

The characteristic polynomial associated with our homogeneous equation is $X^2 + X - 2X = (X + 2)(X - 1)$, so that a fundamental system of solutions for the homogeneous problem is

$$\begin{array}{l} x \mapsto e^{-2x} \\ x \mapsto e^x. \end{array}$$

Based on the terms xe^x and xe^{-2x} we make three Ansatz, whose (suitable) linear combination will yield a solution to our problem.

$$f_1(x) = axe^x$$

$$f_2(x) = bxe^{-2x}$$

$$f_3(x) = cx^2e^{-2x}.$$

Solutions to Ordinary differential equations written on 26th August 2020 We find that

$$f_1''(x) + f_1'(x) - 2f_1(x) = 3ae^x$$

$$f_2''(x) + f_2'(x) - 2f_2(x) = -3be^{-2x}$$

$$f_3''(x) + f_3'(x) - 2f_3(x) = c(2 - 6x)e^{-2x}.$$

If $f_1 + f_2 + f_3$ solves the inhomogenous problem, then a = 1 and 2c = 3b must hold. Fitting the boundary conditions, we find

$$a = 1 \quad b = 2 \quad c = 3.$$

3. Laplace transform (20 points)

Solve the following initial value problem by means of the Laplace transform and express its solution as an elementary function.

$$f''(x) + f(x) = x^{2}$$

$$f(0) = 0$$

$$f'(0) = 0.$$

Idea of solution. We apply the Laplace transform to the DE $f''(x) + f(x) = x^2$ and obtain

$$\mathcal{L}[f'' + f](p) = \mathcal{L}[x^2](p)$$

which yields after simplication

$$(p^2 + 1)$$
L $[f](p) = \frac{2}{p^3}.$

Solving for L[f] and using partial faction decomposition, we find that

$$\mathcal{L}[f](p) = \frac{-2}{p} + \frac{2}{p^3} + \frac{2p}{p^2 + 1}.$$

This is recognised as the Laplace transform of

$$-2 + x^2 + 2\cos(x).$$

A short calculation shows that this function indeed solves the initial value problem.

4. Autonomous systems of differential equations (20 points)

For the following autonomous system, find all equilibrium points and determine whether they are asymptotically stable, stable or unstable

$$\begin{cases} x' = \frac{1}{2}\sin^2(x) + y \\ y' = x^2 - y \end{cases}$$

Idea of solution. Writing

$$F(x,y) = \begin{pmatrix} \frac{1}{2}\sin^2(x) + y \\ x^2 - y \end{pmatrix},$$

the equilibrium points can be found by solving F(x, y) = 0. There is a unique solution, which is (x, y) = (0, 0).

Since this equilibrium is isolated, we try to use linear approximation to determine its stability properties. The Jacobian of F is

$$\begin{pmatrix} \cos^2(x)\sin(x) & 1\\ 2x & -1 \end{pmatrix}$$

which at (0,0) takes the value

$$\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$$

The eigenvalues of this matrix are 0 and -1, so that linear approximation does not give any affirmative answer to the stability question. But $(1,0)^t$ being in the kernel of the Jacobian, points towards the investigation of initial conditions $(x_0, 0)$ with $x_0 > 0$. We observe that with these initial conditions, a trajectory (x(t), y(t)) has non-negative y-coordinate. Further, $x'(t) \ge 0$ for all t and x' > 0 as long as $x(t) \le \pi$. We conclude that (0, 0) is an unstable equilibrium point.

5. Boundary value problems (20 points)

Show that for any $\lambda > 0$ the following boundary value problem has a unique solution. Express this solution as an elementary function.

$$u'' = \lambda u$$
 on $[0, 1]$
 $u(0) = 0$
 $u'(1) = 1.$

Idea of solution. We solve the second order linear DE $u'' - \lambda u = 0$ and obtain the fundamental system of solutions

$$x \mapsto e^{\lambda^{1/2}x}$$
$$x \mapsto e^{-\lambda^{1/2}x}$$

So the general solution of this DE is

$$u(x) = ae^{\lambda^{1/2}x} + be^{-\lambda^{1/2}x}$$

The boundary condition u(0) = 0 implies that a = -b, that is the general solution satisfying u(0) = 0 is of the form

$$u(x) = c(e^{\lambda^{1/2}x} - e^{-\lambda^{1/2}x}) = 2c\sinh(\lambda^{1/2}x).$$

Calculating the derivative of this function we find

$$u'(x) = 2c\lambda^{1/2}\cosh(\lambda^{1/2}x).$$

The boundary condition u'(1) = 1 now fixes, since $\lambda \neq 0$ holds,

$$c = \frac{1}{2\lambda^{1/2}\cosh(\lambda^{1/2})}$$

So we find the unique solution

$$u_{\lambda}(x) = \frac{1}{\lambda^{1/2}} \frac{\cosh(\lambda^{1/2}x)}{\cosh(\lambda^{1/2})}.$$