Department of Mathematics Stockholm University Division of Mathematics Examiner: Samuel Lundqvist Exam in MM7025 – Computer algebra 7.5 hp May 20 2020

You are allowed to use the textbook, Macaulay2, personal notes and everything on the course page. Make sure to justify your answers; *just referring to a Macaulay2 computation is not enough*.

Pass part

- 1. In $\mathbb{Q}[x, y, z]$, order the monomials $x, y^2 z, xz^2, yx, 1$ in decreasing order with respect to x > y > z and
 - (a) Lex,
 - (b) Graded Reverse Lex. 6p
- 2. Let $I = \langle x^4, y^5, z^6 \rangle \subset \mathbb{Q}[x, y, z]$. Determine if $x^3y^6z^7 + x^2y^6z^7 + x^2y^4z^5 \in I$. 6p
- 3. In $\mathbb{Q}[x]$, let $I = \langle x^4 + x^2 + 1, x^3 + x \rangle$. Determine $\mathbf{V}(I)$.
- 4. Let $I = \langle x^2 xz, y^2 yx, z^2 \rangle \subset \mathbb{Q}[x, y, z]$. Compute a Gröbner basis for I with respect to Lex and x > y > z.

Higher degree part

- 1. Let $I = \langle x^3, y^3, z^3, xyz \rangle \subset \mathbb{Q}[x, y, z]$. Determine the monomials in $\mathbb{Q}[x, y, z]$ which are not in I. 6p
- 2. In $\mathbb{Q}[x, y]$, determine whether $\langle y^2 + 1, x^2 + y \rangle = \langle x^3 + xy, x^2y 1 \rangle$ holds or not. 6p
- 3. Determine the generating sets of the ideals $I_1, I_2, I_3 \subset \mathbb{C}[x, y]$, where

$$I_1 = \mathbf{I}(\{(0,0)\}), I_2 = \mathbf{I}(\{(0,0), (0,1)\}), I_3 = \mathbf{I}(\{(0,0), (0,1), (1,0)\}).$$

(The first two problems are from the exercise from the lecture notes for day 10.) 6p

- 4. Let $I = \langle x^2 x, y^2 y, z^2 z, u^2 u, xy + z + ux + 1 \rangle \subset \mathbb{Z}_2[x, y, z, u]$. Determine $\mathbf{V}(I)$. 6p
- 5. Let *I* be an ideal in $\Bbbk[x_1, \ldots, x_n]$, \Bbbk a field. Show that $G = \{g_1, \ldots, g_s\} \subset I$ is a Gröbner basis of *I* with respect to the term order \prec if and only if the leading term of any element of *I* is divisible by one of the $LT(g_i)$ (with respect to \prec). (Exercise 2.5.5.) 6p
- 6. Let $V = \mathbf{V}(x_3 x_1^2, x_4 x_1x_2, x_2x_4 x_1x_5, x_4^2 x_3x_5).$
 - Using any convenient monomial order, determine a collection of monomials spanning the space of remainders modulo a Gröbner basis for the ideal generated by the defining equations of V (over $\mathbb{C}[x_1, x_2, x_3, x_4, x_5]$).
 - For which *i* is there some $m_i \ge 0$ such that $x_i^{m_i} \in \langle LT(I) \rangle$?
 - Is V a finite set? Why or why not?

(Exercise 5.3.6.)

GOOD LUCK!

6p