Department of Mathematics
Exam in
Stockholm University
MM7025 - Computer algebra
Division of Mathematics
Examiner: Samuel Lundqvist

You are allowed to use the textbook, Macaulay2, personal notes and everything on the course page. Make sure to justify your answers; just referring to a Macaulay2 computation is not enough.

Pass part

1. In $\mathbb{Q}[x, y, z]$, order the monomials $x, y^{2} z, x z^{2}, y x, 1$ in decreasing order with respect to $x>y>z$ and
(a) Lex,
(b) Graded Reverse Lex.
2. Let $I=\left\langle x^{4}, y^{5}, z^{6}\right\rangle \subset \mathbb{Q}[x, y, z]$. Determine if $x^{3} y^{6} z^{7}+x^{2} y^{6} z^{7}+x^{2} y^{4} z^{5} \in I$.
3. In $\mathbb{Q}[x]$, let $I=\left\langle x^{4}+x^{2}+1, x^{3}+x\right\rangle$. Determine $\mathbf{V}(I)$.
4. Let $I=\left\langle x^{2}-x z, y^{2}-y x, z^{2}\right\rangle \subset \mathbb{Q}[x, y, z]$. Compute a Gröbner basis for I with respect to Lex and $x>y>z$.

Higher degree part

1. Let $I=\left\langle x^{3}, y^{3}, z^{3}, x y z\right\rangle \subset \mathbb{Q}[x, y, z]$. Determine the monomials in $\mathbb{Q}[x, y, z]$ which are not in $I . \quad 6 \mathrm{p}$
2. In $\mathbb{Q}[x, y]$, determine whether $\left\langle y^{2}+1, x^{2}+y\right\rangle=\left\langle x^{3}+x y, x^{2} y-1\right\rangle$ holds or not.
3. Determine the generating sets of the ideals $I_{1}, I_{2}, I_{3} \subset \mathbb{C}[x, y]$, where

$$
I_{1}=\mathbf{I}(\{(0,0)\}), I_{2}=\mathbf{I}(\{(0,0),(0,1)\}), I_{3}=\mathbf{I}(\{(0,0),(0,1),(1,0)\})
$$

(The first two problems are from the exercise from the lecture notes for day 10.)
6p
4. Let $I=\left\langle x^{2}-x, y^{2}-y, z^{2}-z, u^{2}-u, x y+z+u x+1\right\rangle \subset \mathbb{Z}_{2}[x, y, z, u]$. Determine $\mathbf{V}(I)$.
5. Let I be an ideal in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, \mathbb{k} a field. Show that $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis of I with respect to the term order \prec if and only if the leading term of any element of I is divisible by one of the $L T\left(g_{i}\right)$ (with respect to \prec). (Exercise 2.5.5.)
6. Let $V=\mathbf{V}\left(x_{3}-x_{1}^{2}, x_{4}-x_{1} x_{2}, x_{2} x_{4}-x_{1} x_{5}, x_{4}^{2}-x_{3} x_{5}\right)$.

- Using any convenient monomial order, determine a collection of monomials spanning the space of remainders modulo a Gröbner basis for the ideal generated by the defining equations of V (over $\left.\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]\right)$.
- For which i is there some $m_{i} \geq 0$ such that $x_{i}^{m_{i}} \in\langle L T(I)\rangle$?
- Is V a finite set? Why or why not?
(Exercise 5.3.6.)

