Galois Theory (MMB8005) Wushi Goldring May 16, 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5,30], B: [23,26.5), C: [19.5,23), D: [16,19.5), E: [12.5,16), F: [0,12.5).

Problem 1. Let f(z) = 2" — 20 € Qz].

(a) (1 point) Show that f is irreducible over Q.

(b) (2 points) Give an explicit description of a splitting field L for f over Q.
(c) (1 point) Compute [L : Q]. Justify your answer.

(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible since it is Eisenstein at the prime p = 5.

(b) A splitting field L for f is given by adjoining to Q a root a of " — 20 and a primitive 7th root
of unity ¢. Since the derivative of f is 7x%, the polynomial f shares no nontrivial common factor with
its derivative; hence f is separable. The 7 distinct roots of f are a¢/ with 0 < j < 6. So they are all
in L. Conversely, any splitting field must contain all the roots of f, in particular must contain a and
another root § of f. Then o/ is a 7th root of 1 and not equal to 1; hence a//f is a primitive 7th root
of 1. Every other 7th root of 1 is a power of a/3. In particular, any splitting field contained in L must
contain both a and (.

(c) One has [L: Q] =7-6 =42, since L = Q(a, (), [Q(a) : Q] =7, [Q((),Q] =6 and 7 and 6 are
relatively prime.

(d) A splitting field of a separable polynomial is Galois. We have seen in (b) that L is a splitting
field of f and that f is separable. Hence L/Q is a Galois. O
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Problem 2. Let f and L be as in Problem 1.

(a) (2 points) Give generators and relations for Gal(L/Q).

(b) (2 points) Show that Gal(L/Q) is solvable.

(c) (2 points) Show that there is a unique extension K/Q of degree 6 which is contained in L.

(d) (2 poins) Show that there is a unique quadratic extension F/Q contained in L and describe F

as Q(V/'D) for some integer D.

Solution. (a) Every automorphism of L/Q must map a root of an irreducible polynomial with Q-
coefficients to a root of that same polynomial. In particular, every automorphism must map « to
¢’ with 0 < j < 6 and map ¢ to ¢¥, with 1 < k < 6. Since L/Q is Galois of degree 42, it has
that many automorphisms. Hence all of the 42 choices above give well-defined automorphisms. Define
o € Gal(L/Q) by o(a) = a and o(¢) = ¢3 (we choose (3 because 3 is a generator of (Z/7)*). Define
7 € Gal(L/Q) by 7(a) = (a and 7(¢) = (. One computes the action of conjugation of ¢ on 7 by
computating the conjugation on the generators «, : One finds

oro !t =73,

Hence a presentation by generators and relations is given by
Gal(L/Q)= (o, 7 | 6®=7"=1, oot = 73).

(b) Solution 1: The polynomial f determines a simple radical extension. Hence its splitting field is
solvable, since Q has characteristic 0. Since L/Q is solvable by radicals, its Galois group is solvable.

Solution 2: Let N = (7). Then N is a normal subgroup of Gal(L/Q) (seen either directly from the
presentation or via Sylow’s theorem, as N is the necessarily unique 7-Sylow subgroup of Gal(L/Q).
Now Gal(L/Q)/N = (o) is cyclic of order 6. Since N and Gal(L/Q)/N are both solvable, so is
Gal(L/Q).

(c) By the Galois correspondence, an extension K/Q of degree 6 is the fixed field of a subgroup of
Gal(L/Q) of order 7. Such a subgroup is a 7-Sylow. By Sylow’s theorem, the number of 7-Sylows is
1 mod 7 and divides 6, hence is 1. So there is a unique subgroup of order 7 and a unique extension
K/Q of degree 6, which is K = Q(().

(d) By the correspondence, a quadratic extension F'/Q is the fixed field of a subgroup H of order
21. Such a subgroup H again contains a unique 7-Sylow, so N C H. Since the correspondence is
inclusion-reversing, F' C K. But K = Q(¢). We have seen in class that if p is an odd prime and ¢,
is a primitive pth root of 1, then the unique quadratic extension of Q contained in Q((p) is Q(/p) if
p=1 (mod 4) and Q(\/—p) if p=3 (mod 4). Hence F = Q(v/-7).

O
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Problem 3. Let ®15(x) € Z[x] be the cyclotomic polynomial of primitive 15th roots of unity. Let ¢ be
a root of ®15(x) in some finite extension of Q.
(a) (2 points) Show that for every prime p, the reduction of ®15(x) modulo p is reducible in Flx].
(b) (1 point) Is the regular 15-gon constructible by straightedge and compass? Justify your answer.
(c) (2 point) Show that there are precisely three quadratic extensions of Q contained in Q(().
(d) (2 points) Describe the three distinct quadratic extensions of Q contained in Q(C) in the form
Q(VD), where D € Z is an integer.

Solution. (a) The reducibility is easier for p = 3,5: One has 2% —1 = (23— 1)% and 2% — 1 = (2° - 1)3
in characteristic 5, 3, respectively. On the other hand, the degree of @15 is ¢(15) = 8 and we see that
x'% — 1 does not have an irreducible degree 8 factor modulo 3 or 5.

From now on, assume p # 3,5, so that (p,15) = 1. One has

Gal(Q(¢)/Q) = (Z/15)" = (Z/3)" x (Z/5)" = Z/2 x 74
(all but the last isomorphism are canonical, so we may write "="). Hence the exponent of Gal(Q(¢)/Q)
is 4 i.e., the 4th power of every element is the identity. Thus p* =1 (mod 15) for every prime p # 3, 5.
This gives the chain of divisibility relations

x1571|x7’4_171|:pp4f:c.

The rightmost polynomial factors as the product of all irreducible polynomials over F, of degree
dividing 4 (each appearing once). Hence all factors of ' — 1 mod p have degree dividing 4.

(b) Yes, the regular 15-gon is constructible by straightedge and compass, because 15 is the product
of two distinct Fermat primes 3 = 22" 4 1 and 5 =22 +1.

(c) By the above description of the Galois group, it has precisely three quotients of order 2; these
correspond to the three quadratic extensions of Q contained in Q(({) by the Galois correspondence.

(d) Using what we learned about cyclotomic extensions, esp. Q((,) where p is an odd prime and ¢,
is a primitive pth root of 1, we know that Q(v/5) C Q(¢s) and Q(v/—3) C Q(¢3) (in fact here we have
a coincidental equality special to p = 3) since 5 = 1 (mod 4) and 3 = 3 (mod 4). Hence the third

quadratic subfield is Q(v/—=3 - v/5) = Q(v/—15). O
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Problem 4.
(a) (2 points) Let p be a prime, let a € F;' and put g(x) = 2P —x+a. Show that g(z) is irreducible
in Fplz].
(b) (2 points) Let G be a subgroup of S5 which contains a 5-cycle and a transposition. Show that
G=3S5;s.

(c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the
Galois group of h(x) = 2° — x + k € Q[z] is Ss.

Solution 1 of (a). Let o be a root of g in an extension of F),. An automorphism takes a root of an
irreducible polynomial to another root of the same irreducible polynomial. Apply this to the Frobenius
automorphism: One has Frob(a) = o = a — a. Iterating gives Frob®(a) = a — ka. Hence a — ka and
a have the same minimal polynomial for all & > 1. Since a € F;, every b € F), is a positive integer
multiple of a. Hence the minimal polynomial of o has the p distinct roots a,« +1,...,a+p—1. So
the minimal polynomial is g by degree considerations. U

Solution 2 of (a). If o is a root of g in some extension, then one checks by plugging in that so are
a,a+1,...a+p—1. So these are the p distinct roots of g which necessarily exhaust all the roots of
g since deg g = p. Hence F),(a) = F,(5) for any two roots «, 8 (since f —a € Fp). Thus every root of
g generates an extension of the same degree as every other root. So all the factors of g have the same
degree, call it d. If the number of factors is e, then p = de. Since p is prime d =1 or e = 1. But g has
no roots in F, since b¥ = b for all b € F,,. Hence e = 1 and g is irreducible of degree d = p. O

Solution of (b). The order G is divisible by 10 and divides 120. Further S5 has no subgroup of index
k < 5 except As, as such would give a non-trivial homomorphism S5 — Sy which can only be sgn :
S5 — {£1} with kernel As. Thus, either G = S5 as desired, or |G| must be 10 or 20. In the latter
two cases, G has a normal 5-Sylow subgroup. so G is a subgroup of the normalizer of a 5-Sylow of

S5. Since all 5-Sylows are conjugate, so are their normalizers. Writing one down, the normalizer of
((12345)) is

((12345), (2354) | (12345)° = (2354)* = 1, (2354)(12345)(2354) " = 12345)?)

In particular, we see that all elements of order 2 in the normalizer have type (2,2), so the normalizer
contains no transpositions. [l

Solution of (c). Here we use the method of producing cycle types in the Galois group over Q by
reducing our polynomial with Z coefficients modulo primes which don’t divide the discriminant.
Using the formula for the discriminant of a trinomial ™ + ax + b, we find that the discriminant of
his —4* + 5°k%; it is relatively prime to 3 and 5 since 3|k.
By part (a), h is irreducible mod 5 (since (5, k) = 1). Hence the Galois group of h over Q contains
a 5-cycle. Since 3|k, the reduction of A mod 3 is

P —r=z@' -1 =z@+1)(z-1)(*+1)

and x2 + 1 is irreducible mod 3 since it has degree < 4 and has no roots in F3. Hence the Galois group
of h over Q contains a transposition. By part (b), the Galois group is Ss. U
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Problem 5.
(a) (1 point) Show that x* + x + 1 divides 21 — x in Fa[z].
(b) (1 point) Show that x* + z + 1 divides *7 — x in F3x].
(c) (1 point) Show that the Galois group of x* +7x + 1 € Q] is Sy.
(d) (1 point) Let o be a real root of x* + Tz + 1. Show that « is not constructible by straightedge
and compass.

Solution. In Fp[z], one has that xP" — x is the product of all irreducible polynomials of degree dividing
n, each appearing with multiplicity one.

(a) By the general fact above, it is enough to show that z* + 2 + 1 is irreducible over Fy. It visibly
has no roots. The only other option would be that it would factor as a product of two irreducible
quadratic polynomials. The only irreducible quadratic polynomial over Fy is 2% +x 41, so we conclude
by observing that (2% + x + 1)% # 2% + 2 + 1 (e.g., compare coefficients of z).

(b) Plugging in, we see that 1 is a root. Dividing out by x — 1, the remaining cubic has no roots,
hence is irreducible. So z* + 2 + 1 is the product of a linear factor and an irreducible cubic.

(c) We use the method of 4(c). The discriminant is relatively prime to 2, 3.

Notice that 22 + 72+ 1 =2*+ 2 +1 (mod 2) and (mod 3) and the factorizations of x4 + z + 1 in
Fs[z] and F3[z] were determined in (a) and (b). Hence the Galois group over Q contains a 4-cycle and
a 3-cycle. A subgroup of Sy which contains a 4-cycle and a 3-cycle is all of Sy, for its order is divisible
by 12 and it can’t be A4 due to the odd 4-cycle.

(d) We have to show that Q(«) does not contain a quadratic extension of Q. By the Galois
correspondence and part (c), this is equivalent to showing that a subgroup of Sy of order 6 is not
contained in a subgroup of order 12. We conclude noting that the only subgroup of Sy of order 12 is
A, and that A4 has no subgrou of order 6.

O



