
Galois Theory (MM8005) Wushi Goldring May 16, 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let f(x) = x7 − 20 ∈ Q[x].
(a) (1 point) Show that f is irreducible over Q.
(b) (2 points) Give an explicit description of a splitting field L for f over Q.
(c) (1 point) Compute [L : Q]. Justify your answer.
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible since it is Eisenstein at the prime p = 5.
(b) A splitting field L for f is given by adjoining to Q a root α of x7 − 20 and a primitive 7th root

of unity ζ. Since the derivative of f is 7x6, the polynomial f shares no nontrivial common factor with
its derivative; hence f is separable. The 7 distinct roots of f are αζj with 0 ≤ j ≤ 6. So they are all
in L. Conversely, any splitting field must contain all the roots of f , in particular must contain α and
another root β of f . Then α/β is a 7th root of 1 and not equal to 1; hence α/β is a primitive 7th root
of 1. Every other 7th root of 1 is a power of α/β. In particular, any splitting field contained in L must
contain both α and ζ.

(c) One has [L : Q] = 7 · 6 = 42, since L = Q(α, ζ), [Q(α) : Q] = 7, [Q(ζ),Q] = 6 and 7 and 6 are
relatively prime.

(d) A splitting field of a separable polynomial is Galois. We have seen in (b) that L is a splitting
field of f and that f is separable. Hence L/Q is a Galois. �
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Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for Gal(L/Q).
(b) (2 points) Show that Gal(L/Q) is solvable.
(c) (2 points) Show that there is a unique extension K/Q of degree 6 which is contained in L.
(d) (2 poins) Show that there is a unique quadratic extension F/Q contained in L and describe F

as Q(
√
D) for some integer D.

Solution. (a) Every automorphism of L/Q must map a root of an irreducible polynomial with Q-
coefficients to a root of that same polynomial. In particular, every automorphism must map α to
αζj with 0 ≤ j ≤ 6 and map ζ to ζk, with 1 ≤ k ≤ 6. Since L/Q is Galois of degree 42, it has
that many automorphisms. Hence all of the 42 choices above give well-defined automorphisms. Define
σ ∈ Gal(L/Q) by σ(α) = α and σ(ζ) = ζ3 (we choose ζ3 because 3 is a generator of (Z/7)×). Define
τ ∈ Gal(L/Q) by τ(α) = ζα and τ(ζ) = ζ. One computes the action of conjugation of σ on τ by
computating the conjugation on the generators α, ζ: One finds

στσ−1 = τ3.

Hence a presentation by generators and relations is given by

Gal(L/Q) = 〈σ, τ | σ6 = τ7 = 1, στσ−1 = τ3〉.
(b) Solution 1: The polynomial f determines a simple radical extension. Hence its splitting field is

solvable, since Q has characteristic 0. Since L/Q is solvable by radicals, its Galois group is solvable.
Solution 2: Let N = 〈τ〉. Then N is a normal subgroup of Gal(L/Q) (seen either directly from the

presentation or via Sylow’s theorem, as N is the necessarily unique 7-Sylow subgroup of Gal(L/Q).
Now Gal(L/Q)/N ∼= 〈σ〉 is cyclic of order 6. Since N and Gal(L/Q)/N are both solvable, so is
Gal(L/Q).

(c) By the Galois correspondence, an extension K/Q of degree 6 is the fixed field of a subgroup of
Gal(L/Q) of order 7. Such a subgroup is a 7-Sylow. By Sylow’s theorem, the number of 7-Sylows is
1 mod 7 and divides 6, hence is 1. So there is a unique subgroup of order 7 and a unique extension
K/Q of degree 6, which is K = Q(ζ).

(d) By the correspondence, a quadratic extension F/Q is the fixed field of a subgroup H of order
21. Such a subgroup H again contains a unique 7-Sylow, so N ⊂ H. Since the correspondence is
inclusion-reversing, F ⊂ K. But K = Q(ζ). We have seen in class that if p is an odd prime and ζp
is a primitive pth root of 1, then the unique quadratic extension of Q contained in Q(ζp) is Q(

√
p) if

p ≡ 1 (mod 4) and Q(
√
−p) if p ≡ 3 (mod 4). Hence F = Q(

√
−7).

�
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Problem 3. Let Φ15(x) ∈ Z[x] be the cyclotomic polynomial of primitive 15th roots of unity. Let ζ be
a root of Φ15(x) in some finite extension of Q.

(a) (2 points) Show that for every prime p, the reduction of Φ15(x) modulo p is reducible in Fp[x].
(b) (1 point) Is the regular 15-gon constructible by straightedge and compass? Justify your answer.
(c) (2 point) Show that there are precisely three quadratic extensions of Q contained in Q(ζ).
(d) (2 points) Describe the three distinct quadratic extensions of Q contained in Q(ζ) in the form

Q(
√
D), where D ∈ Z is an integer.

Solution. (a) The reducibility is easier for p = 3, 5: One has x15−1 = (x3−1)5 and x15−1 = (x5−1)3

in characteristic 5, 3, respectively. On the other hand, the degree of Φ15 is ϕ(15) = 8 and we see that
x15 − 1 does not have an irreducible degree 8 factor modulo 3 or 5.

From now on, assume p 6= 3, 5, so that (p, 15) = 1. One has

Gal(Q(ζ)/Q) = (Z/15)× = (Z/3)× × (Z/5)× ∼= Z/2× Z/4

(all but the last isomorphism are canonical, so we may write "="). Hence the exponent of Gal(Q(ζ)/Q)
is 4 i.e., the 4th power of every element is the identity. Thus p4 ≡ 1 (mod 15) for every prime p 6= 3, 5.
This gives the chain of divisibility relations

x15 − 1 | xp4−1 − 1 | xp4 − x.
The rightmost polynomial factors as the product of all irreducible polynomials over Fp of degree
dividing 4 (each appearing once). Hence all factors of x15 − 1 mod p have degree dividing 4.

(b) Yes, the regular 15-gon is constructible by straightedge and compass, because 15 is the product
of two distinct Fermat primes 3 = 22

0
+ 1 and 5 = 22

1
+ 1.

(c) By the above description of the Galois group, it has precisely three quotients of order 2; these
correspond to the three quadratic extensions of Q contained in Q(ζ) by the Galois correspondence.

(d) Using what we learned about cyclotomic extensions, esp. Q(ζp) where p is an odd prime and ζp
is a primitive pth root of 1, we know that Q(

√
5) ⊂ Q(ζ5) and Q(

√
−3) ⊂ Q(ζ3) (in fact here we have

a coincidental equality special to p = 3) since 5 ≡ 1 (mod 4) and 3 ≡ 3 (mod 4). Hence the third
quadratic subfield is Q(

√
−3 ·
√

5) = Q(
√
−15). �
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Problem 4.
(a) (2 points) Let p be a prime, let a ∈ F×

p and put g(x) = xp−x+a. Show that g(x) is irreducible
in Fp[x].

(b) (2 points) Let G be a subgroup of S5 which contains a 5-cycle and a transposition. Show that
G = S5.

(c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the
Galois group of h(x) = x5 − x+ k ∈ Q[x] is S5.

Solution 1 of (a). Let α be a root of g in an extension of Fp. An automorphism takes a root of an
irreducible polynomial to another root of the same irreducible polynomial. Apply this to the Frobenius
automorphism: One has Frob(α) = αp = α− a. Iterating gives Frobk(α) = α− ka. Hence α− ka and
α have the same minimal polynomial for all k ≥ 1. Since a ∈ F×

p , every b ∈ Fp is a positive integer
multiple of a. Hence the minimal polynomial of α has the p distinct roots α, α+ 1, . . . , α+ p− 1. So
the minimal polynomial is g by degree considerations. �

Solution 2 of (a). If α is a root of g in some extension, then one checks by plugging in that so are
α, α+ 1, . . . α+ p− 1. So these are the p distinct roots of g which necessarily exhaust all the roots of
g since deg g = p. Hence Fp(α) = Fp(β) for any two roots α, β (since β −α ∈ Fp). Thus every root of
g generates an extension of the same degree as every other root. So all the factors of g have the same
degree, call it d. If the number of factors is e, then p = de. Since p is prime d = 1 or e = 1. But g has
no roots in Fp, since bp = b for all b ∈ Fp. Hence e = 1 and g is irreducible of degree d = p. �

Solution of (b). The order G is divisible by 10 and divides 120. Further S5 has no subgroup of index
k < 5 except A5, as such would give a non-trivial homomorphism S5 → Sk which can only be sgn :
S5 → {±1} with kernel A5. Thus, either G = S5 as desired, or |G| must be 10 or 20. In the latter
two cases, G has a normal 5-Sylow subgroup. so G is a subgroup of the normalizer of a 5-Sylow of
S5. Since all 5-Sylows are conjugate, so are their normalizers. Writing one down, the normalizer of
〈(12345)〉 is

〈(12345), (2354) | (12345)5 = (2354)4 = 1, (2354)(12345)(2354)−1 = 12345)2〉
In particular, we see that all elements of order 2 in the normalizer have type (2, 2), so the normalizer
contains no transpositions. �

Solution of (c). Here we use the method of producing cycle types in the Galois group over Q by
reducing our polynomial with Z coefficients modulo primes which don’t divide the discriminant.

Using the formula for the discriminant of a trinomial xn + ax+ b, we find that the discriminant of
h is −44 + 55k4; it is relatively prime to 3 and 5 since 3|k.

By part (a), h is irreducible mod 5 (since (5, k) = 1). Hence the Galois group of h over Q contains
a 5-cycle. Since 3|k, the reduction of h mod 3 is

x5 − x = x(x4 − 1) = x(x+ 1)(x− 1)(x2 + 1)

and x2 + 1 is irreducible mod 3 since it has degree < 4 and has no roots in F3. Hence the Galois group
of h over Q contains a transposition. By part (b), the Galois group is S5. �
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Problem 5.
(a) (1 point) Show that x4 + x+ 1 divides x16 − x in F2[x].
(b) (1 point) Show that x4 + x+ 1 divides x27 − x in F3[x].
(c) (1 point) Show that the Galois group of x4 + 7x+ 1 ∈ Q[x] is S4.
(d) (1 point) Let α be a real root of x4 + 7x + 1. Show that α is not constructible by straightedge

and compass.

Solution. In Fp[x], one has that xpn−x is the product of all irreducible polynomials of degree dividing
n, each appearing with multiplicity one.

(a) By the general fact above, it is enough to show that x4 + x+ 1 is irreducible over F2. It visibly
has no roots. The only other option would be that it would factor as a product of two irreducible
quadratic polynomials. The only irreducible quadratic polynomial over F2 is x2+x+1, so we conclude
by observing that (x2 + x+ 1)2 6= x4 + x+ 1 (e.g., compare coefficients of x).

(b) Plugging in, we see that 1 is a root. Dividing out by x − 1, the remaining cubic has no roots,
hence is irreducible. So x4 + x+ 1 is the product of a linear factor and an irreducible cubic.

(c) We use the method of 4(c). The discriminant is relatively prime to 2, 3.
Notice that x4 + 7x+ 1 ≡ x4 + x+ 1 (mod 2) and (mod 3) and the factorizations of x4 + x+ 1 in

F2[x] and F3[x] were determined in (a) and (b). Hence the Galois group over Q contains a 4-cycle and
a 3-cycle. A subgroup of S4 which contains a 4-cycle and a 3-cycle is all of S4, for its order is divisible
by 12 and it can’t be A4 due to the odd 4-cycle.

(d) We have to show that Q(α) does not contain a quadratic extension of Q. By the Galois
correspondence and part (c), this is equivalent to showing that a subgroup of S4 of order 6 is not
contained in a subgroup of order 12. We conclude noting that the only subgroup of S4 of order 12 is
A4 and that A4 has no subgrou of order 6.

�
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