FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^7 - 20 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q} .
- (c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Solution. (a) The polynomial f is irreducible since it is Eisenstein at the prime p=5.

- (b) A splitting field L for f is given by adjoining to \mathbf{Q} a root α of $x^7 20$ and a primitive 7th root of unity ζ . Since the derivative of f is $7x^6$, the polynomial f shares no nontrivial common factor with its derivative; hence f is separable. The 7 distinct roots of f are $\alpha\zeta^j$ with $0 \le j \le 6$. So they are all in f. Conversely, any splitting field must contain all the roots of f, in particular must contain f and another root f of f. Then f is a 7th root of 1 and not equal to 1; hence f is a primitive 7th root of 1. Every other 7th root of 1 is a power of f. In particular, any splitting field contained in f must contain both f and f.
- (c) One has $[L: \mathbf{Q}] = 7 \cdot 6 = 42$, since $L = \mathbf{Q}(\alpha, \zeta)$, $[\mathbf{Q}(\alpha): \mathbf{Q}] = 7$, $[\mathbf{Q}(\zeta), \mathbf{Q}] = 6$ and 7 and 6 are relatively prime.
- (d) A splitting field of a separable polynomial is Galois. We have seen in (b) that L is a splitting field of f and that f is separable. Hence L/\mathbb{Q} is a Galois.

Problem 2. Let f and L be as in Problem 1.

- (a) (2 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbb{Q})$ is solvable.
- (c) (2 points) Show that there is a unique extension K/\mathbb{Q} of degree 6 which is contained in L.
- (d) (2 poins) Show that there is a unique quadratic extension F/\mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Solution. (a) Every automorphism of L/\mathbf{Q} must map a root of an irreducible polynomial with \mathbf{Q} -coefficients to a root of that same polynomial. In particular, every automorphism must map α to $\alpha \zeta^j$ with $0 \leq j \leq 6$ and map ζ to ζ^k , with $1 \leq k \leq 6$. Since L/\mathbf{Q} is Galois of degree 42, it has that many automorphisms. Hence all of the 42 choices above give well-defined automorphisms. Define $\sigma \in \mathsf{Gal}(L/\mathbf{Q})$ by $\sigma(\alpha) = \alpha$ and $\sigma(\zeta) = \zeta^3$ (we choose ζ^3 because 3 is a generator of $(\mathbf{Z}/7)^{\times}$). Define $\tau \in \mathsf{Gal}(L/\mathbf{Q})$ by $\tau(\alpha) = \zeta \alpha$ and $\tau(\zeta) = \zeta$. One computes the action of conjugation of σ on τ by computating the conjugation on the generators α, ζ : One finds

$$\sigma \tau \sigma^{-1} = \tau^3$$
.

Hence a presentation by generators and relations is given by

$$\mathsf{Gal}(L/\mathbf{Q}) = \langle \sigma, \ \tau \mid \sigma^6 = \tau^7 = 1, \ \sigma\tau\sigma^{-1} = \tau^3 \rangle.$$

(b) Solution 1: The polynomial f determines a simple radical extension. Hence its splitting field is solvable, since \mathbf{Q} has characteristic 0. Since L/\mathbf{Q} is solvable by radicals, its Galois group is solvable.

Solution 2: Let $N = \langle \tau \rangle$. Then N is a normal subgroup of $\mathsf{Gal}(L/\mathbf{Q})$ (seen either directly from the presentation or via Sylow's theorem, as N is the necessarily unique 7-Sylow subgroup of $\mathsf{Gal}(L/\mathbf{Q})$. Now $\mathsf{Gal}(L/\mathbf{Q})/N \cong \langle \sigma \rangle$ is cyclic of order 6. Since N and $\mathsf{Gal}(L/\mathbf{Q})/N$ are both solvable, so is $\mathsf{Gal}(L/\mathbf{Q})$.

- (c) By the Galois correspondence, an extension K/\mathbb{Q} of degree 6 is the fixed field of a subgroup of $Gal(L/\mathbb{Q})$ of order 7. Such a subgroup is a 7-Sylow. By Sylow's theorem, the number of 7-Sylows is 1 mod 7 and divides 6, hence is 1. So there is a unique subgroup of order 7 and a unique extension K/\mathbb{Q} of degree 6, which is $K = \mathbb{Q}(\zeta)$.
- (d) By the correspondence, a quadratic extension F/\mathbf{Q} is the fixed field of a subgroup H of order 21. Such a subgroup H again contains a unique 7-Sylow, so $N \subset H$. Since the correspondence is inclusion-reversing, $F \subset K$. But $K = \mathbf{Q}(\zeta)$. We have seen in class that if p is an odd prime and ζ_p is a primitive pth root of 1, then the unique quadratic extension of \mathbf{Q} contained in $\mathbf{Q}(\zeta_p)$ if $p \equiv 1 \pmod{4}$ and $\mathbf{Q}(\sqrt{-p})$ if $p \equiv 3 \pmod{4}$. Hence $F = \mathbf{Q}(\sqrt{-7})$.

Problem 3. Let $\Phi_{15}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 15th roots of unity. Let ζ be a root of $\Phi_{15}(x)$ in some finite extension of \mathbf{Q} .

- (a) (2 points) Show that for every prime p, the reduction of $\Phi_{15}(x)$ modulo p is reducible in $\mathbf{F}_p[x]$.
- (b) (1 point) Is the regular 15-gon constructible by straightedge and compass? Justify your answer.
- (c) (2 point) Show that there are precisely three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.
- (d) (2 points) Describe the three distinct quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ in the form $\mathbf{Q}(\sqrt{D})$, where $D \in \mathbf{Z}$ is an integer.

Solution. (a) The reducibility is easier for p = 3, 5: One has $x^{15} - 1 = (x^3 - 1)^5$ and $x^{15} - 1 = (x^5 - 1)^3$ in characteristic 5, 3, respectively. On the other hand, the degree of Φ_{15} is $\varphi(15) = 8$ and we see that $x^{15} - 1$ does not have an irreducible degree 8 factor modulo 3 or 5.

From now on, assume $p \neq 3, 5$, so that (p, 15) = 1. One has

$$\mathsf{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q}) = (\mathbf{Z}/15)^{\times} = (\mathbf{Z}/3)^{\times} \times (\mathbf{Z}/5)^{\times} \cong \mathbf{Z}/2 \times \mathbf{Z}/4$$

(all but the last isomorphism are canonical, so we may write "="). Hence the exponent of $\operatorname{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q})$ is 4 i.e., the 4th power of every element is the identity. Thus $p^4 \equiv 1 \pmod{15}$ for every prime $p \neq 3, 5$. This gives the chain of divisibility relations

$$x^{15} - 1 \mid x^{p^4 - 1} - 1 \mid x^{p^4} - x.$$

The rightmost polynomial factors as the product of all irreducible polynomials over \mathbf{F}_p of degree dividing 4 (each appearing once). Hence all factors of $x^{15} - 1 \mod p$ have degree dividing 4.

- (b) Yes, the regular 15-gon is constructible by straightedge and compass, because 15 is the product of two distinct Fermat primes $3 = 2^{2^0} + 1$ and $5 = 2^{2^1} + 1$.
- (c) By the above description of the Galois group, it has precisely three quotients of order 2; these correspond to the three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ by the Galois correspondence.
- (d) Using what we learned about cyclotomic extensions, esp. $\mathbf{Q}(\zeta_p)$ where p is an odd prime and ζ_p is a primitive pth root of 1, we know that $\mathbf{Q}(\sqrt{5}) \subset \mathbf{Q}(\zeta_5)$ and $\mathbf{Q}(\sqrt{-3}) \subset \mathbf{Q}(\zeta_3)$ (in fact here we have a coincidental equality special to p=3) since $5 \equiv 1 \pmod{4}$ and $3 \equiv 3 \pmod{4}$. Hence the third quadratic subfield is $\mathbf{Q}(\sqrt{-3} \cdot \sqrt{5}) = \mathbf{Q}(\sqrt{-15})$.

Problem 4.

- (a) (2 points) Let p be a prime, let $a \in \mathbf{F}_p^{\times}$ and put $g(x) = x^p x + a$. Show that g(x) is irreducible in $\mathbf{F}_p[x]$.
- (b) (2 points) Let G be a subgroup of S_5 which contains a 5-cycle and a transposition. Show that $G = S_5$.
- (c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the Galois group of $h(x) = x^5 x + k \in \mathbf{Q}[x]$ is S_5 .

Solution 1 of (a). Let α be a root of g in an extension of \mathbf{F}_p . An automorphism takes a root of an irreducible polynomial to another root of the same irreducible polynomial. Apply this to the Frobenius automorphism: One has $\operatorname{Frob}(\alpha) = \alpha^p = \alpha - a$. Iterating gives $\operatorname{Frob}^k(\alpha) = \alpha - ka$. Hence $\alpha - ka$ and α have the same minimal polynomial for all $k \geq 1$. Since $a \in \mathbf{F}_p^{\times}$, every $b \in \mathbf{F}_p$ is a positive integer multiple of a. Hence the minimal polynomial of α has the p distinct roots $\alpha, \alpha + 1, \ldots, \alpha + p - 1$. So the minimal polynomial is g by degree considerations.

Solution 2 of (a). If α is a root of g in some extension, then one checks by plugging in that so are $\alpha, \alpha + 1, \ldots \alpha + p - 1$. So these are the p distinct roots of g which necessarily exhaust all the roots of g since $\deg g = p$. Hence $\mathbf{F}_p(\alpha) = \mathbf{F}_p(\beta)$ for any two roots α, β (since $\beta - \alpha \in \mathbf{F}_p$). Thus every root of g generates an extension of the same degree as every other root. So all the factors of g have the same degree, call it g. If the number of factors is g, then g is prime g is prime g in g in g has no roots in g is inceparator of g for all g is irreducible of degree g in g in that so are g is irreducible of degree g. g

Solution of (b). The order G is divisible by 10 and divides 120. Further S_5 has no subgroup of index k < 5 except A_5 , as such would give a non-trivial homomorphism $S_5 \to S_k$ which can only be sgn: $S_5 \to \{\pm 1\}$ with kernel A_5 . Thus, either $G = S_5$ as desired, or |G| must be 10 or 20. In the latter two cases, G has a normal 5-Sylow subgroup. so G is a subgroup of the normalizer of a 5-Sylow of S_5 . Since all 5-Sylows are conjugate, so are their normalizers. Writing one down, the normalizer of $\langle (12345) \rangle$ is

$$\langle (12345), (2354) \mid (12345)^5 = (2354)^4 = 1, (2354)(12345)(2354)^{-1} = 12345)^2 \rangle$$

In particular, we see that all elements of order 2 in the normalizer have type (2,2), so the normalizer contains no transpositions.

Solution of (c). Here we use the method of producing cycle types in the Galois group over \mathbf{Q} by reducing our polynomial with \mathbf{Z} coefficients modulo primes which don't divide the discriminant.

Using the formula for the discriminant of a trinomial $x^n + ax + b$, we find that the discriminant of h is $-4^4 + 5^5 k^4$; it is relatively prime to 3 and 5 since 3|k.

By part (a), h is irreducible mod 5 (since (5, k) = 1). Hence the Galois group of h over \mathbf{Q} contains a 5-cycle. Since 3|k, the reduction of h mod 3 is

$$x^5 - x = x(x^4 - 1) = x(x+1)(x-1)(x^2 + 1)$$

and $x^2 + 1$ is irreducible mod 3 since it has degree < 4 and has no roots in \mathbf{F}_3 . Hence the Galois group of h over \mathbf{Q} contains a transposition. By part (b), the Galois group is S_5 .

Problem 5.

- (a) (1 point) Show that $x^4 + x + 1$ divides $x^{16} x$ in $\mathbf{F}_2[x]$.
- (b) (1 point) Show that $x^4 + x + 1$ divides $x^{27} x$ in $\mathbf{F}_3[x]$.
- (c) (1 point) Show that the Galois group of $x^4 + 7x + 1 \in \mathbf{Q}[x]$ is S_4 .
- (d) (1 point) Let α be a real root of $x^4 + 7x + 1$. Show that α is not constructible by straightedge and compass.

Solution. In $\mathbf{F}_p[x]$, one has that $x^{p^n} - x$ is the product of all irreducible polynomials of degree dividing n, each appearing with multiplicity one.

- (a) By the general fact above, it is enough to show that $x^4 + x + 1$ is irreducible over \mathbf{F}_2 . It visibly has no roots. The only other option would be that it would factor as a product of two irreducible quadratic polynomials. The only irreducible quadratic polynomial over \mathbf{F}_2 is $x^2 + x + 1$, so we conclude by observing that $(x^2 + x + 1)^2 \neq x^4 + x + 1$ (e.g., compare coefficients of x).
- (b) Plugging in, we see that 1 is a root. Dividing out by x-1, the remaining cubic has no roots, hence is irreducible. So $x^4 + x + 1$ is the product of a linear factor and an irreducible cubic.
 - (c) We use the method of 4(c). The discriminant is relatively prime to 2, 3.

Notice that $x^4 + 7x + 1 \equiv x^4 + x + 1 \pmod{2}$ and $\pmod{3}$ and the factorizations of $x^4 + x + 1$ in $\mathbf{F}_2[x]$ and $\mathbf{F}_3[x]$ were determined in (a) and (b). Hence the Galois group over \mathbf{Q} contains a 4-cycle and a 3-cycle. A subgroup of S_4 which contains a 4-cycle and a 3-cycle is all of S_4 , for its order is divisible by 12 and it can't be A_4 due to the odd 4-cycle.

(d) We have to show that $\mathbf{Q}(\alpha)$ does not contain a quadratic extension of \mathbf{Q} . By the Galois correspondence and part (c), this is equivalent to showing that a subgroup of S_4 of order 6 is not contained in a subgroup of order 12. We conclude noting that the only subgroup of S_4 of order 12 is A_4 and that A_4 has no subgrou of order 6.