FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of $12.5 / 30$ or higher to pass this exam. More precisely, the following scale will be used:

A: $[26.5,30], \mathrm{B}:[23,26.5), \mathrm{C}:[19.5,23), \mathrm{D}:[16,19.5), \mathrm{E}:[12.5,16), \mathrm{F}:[0,12.5)$.
Problem 1. Let $f(x)=x^{7}-20 \in \mathbf{Q}[x]$.
(a) (1 point) Show that f is irreducible over \mathbf{Q}.
(b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q}.
(c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
(d) (1 point) Show that L / \mathbf{Q} is Galois.

Solution. (a) The polynomial f is irreducible since it is Eisenstein at the prime $p=5$.
(b) A splitting field L for f is given by adjoining to \mathbf{Q} a root α of $x^{7}-20$ and a primitive 7 th root of unity ζ. Since the derivative of f is $7 x^{6}$, the polynomial f shares no nontrivial common factor with its derivative; hence f is separable. The 7 distinct roots of f are $\alpha \zeta^{j}$ with $0 \leq j \leq 6$. So they are all in L. Conversely, any splitting field must contain all the roots of f, in particular must contain α and another root β of f. Then α / β is a 7 th root of 1 and not equal to 1 ; hence α / β is a primitive 7 th root of 1 . Every other 7 th root of 1 is a power of α / β. In particular, any splitting field contained in L must contain both α and ζ.
(c) One has $[L: \mathbf{Q}]=7 \cdot 6=42$, since $L=\mathbf{Q}(\alpha, \zeta),[\mathbf{Q}(\alpha): \mathbf{Q}]=7,[\mathbf{Q}(\zeta), \mathbf{Q}]=6$ and 7 and 6 are relatively prime.
(d) A splitting field of a separable polynomial is Galois. We have seen in (b) that L is a splitting field of f and that f is separable. Hence L / \mathbf{Q} is a Galois.

Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for $\operatorname{Gal}(L / \mathbf{Q})$.
(b) (2 points) Show that $\operatorname{Gal}(L / \mathbf{Q})$ is solvable.
(c) (2 points) Show that there is a unique extension K / \mathbf{Q} of degree 6 which is contained in L.
(d) (2 poins) Show that there is a unique quadratic extension F / \mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Solution. (a) Every automorphism of L / \mathbf{Q} must map a root of an irreducible polynomial with Qcoefficients to a root of that same polynomial. In particular, every automorphism must map α to $\alpha \zeta^{j}$ with $0 \leq j \leq 6$ and map ζ to ζ^{k}, with $1 \leq k \leq 6$. Since L / \mathbf{Q} is Galois of degree 42, it has that many automorphisms. Hence all of the 42 choices above give well-defined automorphisms. Define $\sigma \in \operatorname{Gal}(L / \mathbf{Q})$ by $\sigma(\alpha)=\alpha$ and $\sigma(\zeta)=\zeta^{3}$ (we choose ζ^{3} because 3 is a generator of $\left.(\mathbf{Z} / 7)^{\times}\right)$. Define $\tau \in \operatorname{Gal}(L / \mathbf{Q})$ by $\tau(\alpha)=\zeta \alpha$ and $\tau(\zeta)=\zeta$. One computes the action of conjugation of σ on τ by computating the conjugation on the generators α, ζ : One finds

$$
\sigma \tau \sigma^{-1}=\tau^{3}
$$

Hence a presentation by generators and relations is given by

$$
\operatorname{Gal}(L / \mathbf{Q})=\left\langle\sigma, \tau \mid \sigma^{6}=\tau^{7}=1, \sigma \tau \sigma^{-1}=\tau^{3}\right\rangle .
$$

(b) Solution 1: The polynomial f determines a simple radical extension. Hence its splitting field is solvable, since \mathbf{Q} has characteristic 0 . Since L / \mathbf{Q} is solvable by radicals, its Galois group is solvable.

Solution 2: Let $N=\langle\tau\rangle$. Then N is a normal subgroup of $\operatorname{Gal}(L / \mathbf{Q})$ (seen either directly from the presentation or via Sylow's theorem, as N is the necessarily unique 7-Sylow subgroup of Gal (L / \mathbf{Q}). Now $\operatorname{Gal}(L / \mathbf{Q}) / N \cong\langle\sigma\rangle$ is cyclic of order 6 . Since N and $\operatorname{Gal}(L / \mathbf{Q}) / N$ are both solvable, so is $\operatorname{Gal}(L / \mathbf{Q})$.
(c) By the Galois correspondence, an extension K / \mathbf{Q} of degree 6 is the fixed field of a subgroup of $\mathrm{Gal}(L / \mathbf{Q})$ of order 7. Such a subgroup is a 7-Sylow. By Sylow's theorem, the number of 7-Sylows is $1 \bmod 7$ and divides 6 , hence is 1 . So there is a unique subgroup of order 7 and a unique extension K / Q of degree 6 , which is $K=\mathbf{Q}(\zeta)$.
(d) By the correspondence, a quadratic extension F / \mathbf{Q} is the fixed field of a subgroup H of order 21. Such a subgroup H again contains a unique 7 -Sylow, so $N \subset H$. Since the correspondence is inclusion-reversing, $F \subset K$. But $K=\mathbf{Q}(\zeta)$. We have seen in class that if p is an odd prime and ζ_{p} is a primitive p th root of 1 , then the unique quadratic extension of \mathbf{Q} contained in $\mathbf{Q}\left(\zeta_{p}\right)$ is $\mathbf{Q}(\sqrt{p})$ if $p \equiv 1(\bmod 4)$ and $\mathbf{Q}(\sqrt{-p})$ if $p \equiv 3(\bmod 4)$. Hence $F=\mathbf{Q}(\sqrt{-7})$.

Problem 3. Let $\Phi_{15}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 15 th roots of unity. Let ζ be a root of $\Phi_{15}(x)$ in some finite extension of \mathbf{Q}.
(a) (2 points) Show that for every prime p, the reduction of $\Phi_{15}(x)$ modulo p is reducible in $\mathbf{F}_{p}[x]$.
(b) (1 point) Is the regular 15 -gon constructible by straightedge and compass? Justify your answer.
(c) (2 point) Show that there are precisely three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.
(d) (2 points) Describe the three distinct quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ in the form $\mathbf{Q}(\sqrt{D})$, where $D \in \mathbf{Z}$ is an integer.
Solution. (a) The reducibility is easier for $p=3,5$: One has $x^{15}-1=\left(x^{3}-1\right)^{5}$ and $x^{15}-1=\left(x^{5}-1\right)^{3}$ in characteristic 5,3 , respectively. On the other hand, the degree of Φ_{15} is $\varphi(15)=8$ and we see that $x^{15}-1$ does not have an irreducible degree 8 factor modulo 3 or 5 .

From now on, assume $p \neq 3,5$, so that $(p, 15)=1$. One has

$$
\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})=(\mathbf{Z} / 15)^{\times}=(\mathbf{Z} / 3)^{\times} \times(\mathbf{Z} / 5)^{\times} \cong \mathbf{Z} / 2 \times \mathbf{Z} / 4
$$

(all but the last isomorphism are canonical, so we may write " $=$ "). Hence the exponent of $\mathrm{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$ is 4 i.e., the 4 th power of every element is the identity. Thus $p^{4} \equiv 1(\bmod 15)$ for every prime $p \neq 3,5$. This gives the chain of divisibility relations

$$
x^{15}-1\left|x^{p^{4}-1}-1\right| x^{p^{4}}-x .
$$

The rightmost polynomial factors as the product of all irreducible polynomials over \mathbf{F}_{p} of degree dividing 4 (each appearing once). Hence all factors of $x^{15}-1 \bmod p$ have degree dividing 4 .
(b) Yes, the regular 15 -gon is constructible by straightedge and compass, because 15 is the product of two distinct Fermat primes $3=2^{2^{0}}+1$ and $5=2^{2^{1}}+1$.
(c) By the above description of the Galois group, it has precisely three quotients of order 2; these correspond to the three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ by the Galois correspondence.
(d) Using what we learned about cyclotomic extensions, esp. $\mathbf{Q}\left(\zeta_{p}\right)$ where p is an odd prime and ζ_{p} is a primitive p th root of 1 , we know that $\mathbf{Q}(\sqrt{5}) \subset \mathbf{Q}\left(\zeta_{5}\right)$ and $\mathbf{Q}(\sqrt{-3}) \subset \mathbf{Q}\left(\zeta_{3}\right)$ (in fact here we have a coincidental equality special to $p=3)$ since $5 \equiv 1(\bmod 4)$ and $3 \equiv 3(\bmod 4)$. Hence the third quadratic subfield is $\mathbf{Q}(\sqrt{-3} \cdot \sqrt{5})=\mathbf{Q}(\sqrt{-15})$.

Problem 4.

(a) (2 points) Let p be a prime, let $a \in \mathbf{F}_{p}^{\times}$and put $g(x)=x^{p}-x+a$. Show that $g(x)$ is irreducible in $\mathbf{F}_{p}[x]$.
(b) (2 points) Let G be a subgroup of S_{5} which contains a 5-cycle and a transposition. Show that $G=S_{5}$.
(c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the Galois group of $h(x)=x^{5}-x+k \in \mathbf{Q}[x]$ is S_{5}.

Solution 1 of (a). Let α be a root of g in an extension of \mathbf{F}_{p}. An automorphism takes a root of an irreducible polynomial to another root of the same irreducible polynomial. Apply this to the Frobenius automorphism: One has $\operatorname{Frob}(\alpha)=\alpha^{p}=\alpha-a$. Iterating gives $\operatorname{Frob}^{k}(\alpha)=\alpha-k a$. Hence $\alpha-k a$ and α have the same minimal polynomial for all $k \geq 1$. Since $a \in \mathbf{F}_{p}^{\times}$, every $b \in \mathbf{F}_{p}$ is a positive integer multiple of a. Hence the minimal polynomial of α has the p distinct roots $\alpha, \alpha+1, \ldots, \alpha+p-1$. So the minimal polynomial is g by degree considerations.
Solution 2 of (a). If α is a root of g in some extension, then one checks by plugging in that so are $\alpha, \alpha+1, \ldots \alpha+p-1$. So these are the p distinct roots of g which necessarily exhaust all the roots of g since $\operatorname{deg} g=p$. Hence $\mathbf{F}_{p}(\alpha)=\mathbf{F}_{p}(\beta)$ for any two roots α, β (since $\beta-\alpha \in \mathbf{F}_{p}$). Thus every root of g generates an extension of the same degree as every other root. So all the factors of g have the same degree, call it d. If the number of factors is e, then $p=d e$. Since p is prime $d=1$ or $e=1$. But g has no roots in \mathbf{F}_{p}, since $b^{p}=b$ for all $b \in \mathbf{F}_{p}$. Hence $e=1$ and g is irreducible of degree $d=p$.
Solution of (b). The order G is divisible by 10 and divides 120 . Further S_{5} has no subgroup of index $k<5$ except A_{5}, as such would give a non-trivial homomorphism $S_{5} \rightarrow S_{k}$ which can only be sgn : $S_{5} \rightarrow\{ \pm 1\}$ with kernel A_{5}. Thus, either $G=S_{5}$ as desired, or $|G|$ must be 10 or 20 . In the latter two cases, G has a normal 5 -Sylow subgroup. so G is a subgroup of the normalizer of a 5-Sylow of S_{5}. Since all 5 -Sylows are conjugate, so are their normalizers. Writing one down, the normalizer of $\langle(12345)\rangle$ is

$$
\left.\left.\langle(12345),(2354)|(12345)^{5}=(2354)^{4}=1,(2354)(12345)(2354)^{-1}=12345\right)^{2}\right\rangle
$$

In particular, we see that all elements of order 2 in the normalizer have type $(2,2)$, so the normalizer contains no transpositions.
Solution of (c). Here we use the method of producing cycle types in the Galois group over \mathbf{Q} by reducing our polynomial with \mathbf{Z} coefficients modulo primes which don't divide the discriminant.

Using the formula for the discriminant of a trinomial $x^{n}+a x+b$, we find that the discriminant of h is $-4^{4}+5^{5} k^{4}$; it is relatively prime to 3 and 5 since $3 \mid k$.

By part (a), h is irreducible mod 5 (since $(5, k)=1$). Hence the Galois group of h over \mathbf{Q} contains a 5 -cycle. Since $3 \mid k$, the reduction of $h \bmod 3$ is

$$
x^{5}-x=x\left(x^{4}-1\right)=x(x+1)(x-1)\left(x^{2}+1\right)
$$

and $x^{2}+1$ is irreducible mod 3 since it has degree <4 and has no roots in \mathbf{F}_{3}. Hence the Galois group of h over \mathbf{Q} contains a transposition. By part (b), the Galois group is S_{5}.

Problem 5.

(a) (1 point) Show that $x^{4}+x+1$ divides $x^{16}-x$ in $\mathbf{F}_{2}[x]$.
(b) (1 point) Show that $x^{4}+x+1$ divides $x^{27}-x$ in $\mathbf{F}_{3}[x]$.
(c) (1 point) Show that the Galois group of $x^{4}+7 x+1 \in \mathbf{Q}[x]$ is S_{4}.
(d) (1 point) Let α be a real root of $x^{4}+7 x+1$. Show that α is not constructible by straightedge and compass.
Solution. In $\mathbf{F}_{p}[x]$, one has that $x^{p^{n}}-x$ is the product of all irreducible polynomials of degree dividing n, each appearing with multiplicity one.
(a) By the general fact above, it is enough to show that $x^{4}+x+1$ is irreducible over \mathbf{F}_{2}. It visibly has no roots. The only other option would be that it would factor as a product of two irreducible quadratic polynomials. The only irreducible quadratic polynomial over \mathbf{F}_{2} is $x^{2}+x+1$, so we conclude by observing that $\left(x^{2}+x+1\right)^{2} \neq x^{4}+x+1$ (e.g., compare coefficients of x).
(b) Plugging in, we see that 1 is a root. Dividing out by $x-1$, the remaining cubic has no roots, hence is irreducible. So $x^{4}+x+1$ is the product of a linear factor and an irreducible cubic.
(c) We use the method of 4 (c). The discriminant is relatively prime to 2,3 .

Notice that $x^{4}+7 x+1 \equiv x^{4}+x+1(\bmod 2)$ and $(\bmod 3)$ and the factorizations of $x^{4}+x+1$ in $\mathbf{F}_{2}[x]$ and $\mathbf{F}_{3}[x]$ were determined in (a) and (b). Hence the Galois group over \mathbf{Q} contains a 4-cycle and a 3 -cycle. A subgroup of S_{4} which contains a 4 -cycle and a 3 -cycle is all of S_{4}, for its order is divisible by 12 and it can't be A_{4} due to the odd 4 -cycle.
(d) We have to show that $\mathbf{Q}(\alpha)$ does not contain a quadratic extension of \mathbf{Q}. By the Galois correspondence and part (c), this is equivalent to showing that a subgroup of S_{4} of order 6 is not contained in a subgroup of order 12. We conclude noting that the only subgroup of S_{4} of order 12 is A_{4} and that A_{4} has no subgrou of order 6 .

