FINAL EXAM

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of $12.5 / 30$ or higher to pass this exam. More precisely, the following scale will be used:

A: $[26.5,30], \mathrm{B}:[23,26.5), \mathrm{C}:[19.5,23), \mathrm{D}:[16,19.5), \mathrm{E}:[12.5,16), \mathrm{F}:[0,12.5)$.
Problem 1. Let $f(x)=x^{7}-20 \in \mathbf{Q}[x]$.
(a) (1 point) Show that f is irreducible over \mathbf{Q}.
(b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q}.
(c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
(d) (1 point) Show that L / \mathbf{Q} is Galois.

Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for $\operatorname{Gal}(L / \mathbf{Q})$.
(b) (2 points) Show that $\operatorname{Gal}(L / \mathbf{Q})$ is solvable.
(c) (2 points) Show that there is a unique extension K / \mathbf{Q} of degree 6 which is contained in L.
(d) (2 poins) Show that there is a unique quadratic extension F / \mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Problem 3. Let $\Phi_{15}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 15 th roots of unity. Let ζ be a root of $\Phi_{15}(x)$ in some finite extension of \mathbf{Q}.
(a) (2 points) Show that for every prime p, the reduction of $\Phi_{15}(x)$ modulo p is reducible in $\mathbf{F}_{p}[x]$.
(b) (1 point) Is the regular 15 -gon constructible by straightedge and compass? Justify your answer.
(c) (2 point) Show that there are precisely three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.
(d) (2 points) Describe the three distinct quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ in the form $\mathbf{Q}(\sqrt{D})$, where $D \in \mathbf{Z}$ is an integer.

Problem 4.

(a) (2 points) Let p be a prime, let $a \in \mathbf{F}_{p}^{\times}$and put $g(x)=x^{p}-x+a$. Show that $g(x)$ is irreducible in $\mathbf{F}_{p}[x]$.
(b) (2 points) Let G be a subgroup of S_{5} which contains a 5-cycle and a transposition. Show that $G=S_{5}$.
(c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the Galois group of $h(x)=x^{5}-x+k \in \mathbf{Q}[x]$ is S_{5}.

Problem 5.

(a) (1 point) Show that $x^{4}+x+1$ divides $x^{16}-x$ in $\mathbf{F}_{2}[x]$.
(b) (1 point) Show that $x^{4}+x+1$ divides $x^{27}-x$ in $\mathbf{F}_{3}[x]$.
(c) (1 point) Show that the Galois group of $x^{4}+7 x+1 \in \mathbf{Q}[x]$ is S_{4}.
(d) (1 point) Let α be a real root of $x^{4}+7 x+1$. Show that α is not constructible by straightedge and compass.

