FINAL EXAM

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^7 - 20 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q} .
- (c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Problem 2. Let f and L be as in Problem 1.

- (a) (2 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbb{Q})$ is solvable.
- (c) (2 points) Show that there is a unique extension K/\mathbb{Q} of degree 6 which is contained in L.
- (d) (2 poins) Show that there is a unique quadratic extension F/\mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Problem 3. Let $\Phi_{15}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 15th roots of unity. Let ζ be a root of $\Phi_{15}(x)$ in some finite extension of \mathbf{Q} .

- (a) (2 points) Show that for every prime p, the reduction of $\Phi_{15}(x)$ modulo p is reducible in $\mathbf{F}_p[x]$.
- (b) (1 point) Is the regular 15-gon constructible by straightedge and compass? Justify your answer.
- (c) (2 point) Show that there are precisely three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.
- (d) (2 points) Describe the three distinct quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ in the form $\mathbf{Q}(\sqrt{D})$, where $D \in \mathbf{Z}$ is an integer.

Problem 4.

- (a) (2 points) Let p be a prime, let $a \in \mathbf{F}_p^{\times}$ and put $g(x) = x^p x + a$. Show that g(x) is irreducible in $\mathbf{F}_p[x]$.
- (b) (2 points) Let G be a subgroup of S_5 which contains a 5-cycle and a transposition. Show that $G = S_5$.
- (c) (2 points) Assume k is an integer which is divisible by 3 and not divisible by 5. Show that the Galois group of $h(x) = x^5 x + k \in \mathbf{Q}[x]$ is S_5 .

Problem 5.

- (a) (1 point) Show that $x^4 + x + 1$ divides $x^{16} x$ in $\mathbf{F}_2[x]$.
- (b) (1 point) Show that $x^4 + x + 1$ divides $x^{27} x$ in $\mathbf{F}_3[x]$.
- (c) (1 point) Show that the Galois group of $x^4 + 7x + 1 \in \mathbf{Q}[x]$ is S_4 .
- (d) (1 point) Let α be a real root of $x^4 + 7x + 1$. Show that α is not constructible by straightedge and compass.