FINAL EXAM

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of $12.5 / 30$ or higher to pass this exam. More precisely, the following scale will be used:

A: $[26.5,30], \mathrm{B}:[23,26.5), \mathrm{C}:[19.5,23), \mathrm{D}:[16,19.5), \mathrm{E}:[12.5,16), \mathrm{F}:[0,12.5)$.
Problem 1. Let $f(x)=x^{13}-15 \in \mathbf{Q}[x]$.
(a) (1 point) Show that f is irreducible over \mathbf{Q}.
(b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q}.
(c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
(d) (1 point) Show that L / \mathbf{Q} is Galois.

Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for $\operatorname{Gal}(L / \mathbf{Q})$.
(b) (2 points) Show that $\operatorname{Gal}(L / \mathbf{Q})$ is solvable.
(c) (2 points) Show that there is a unique extension K / \mathbf{Q} of degree 12 which is contained in L.
(d) (2 points) Show that there is a unique quadratic extension F / \mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Problem 3. Let $\Phi_{24}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 24 th roots of unity. Let ζ be a root of $\Phi_{24}(x)$ in some finite extension of \mathbf{Q}.
(a) (2 points) Show that for every prime p, the reduction of $\Phi_{24}(x)$ modulo p is reducible in $\mathbf{F}_{p}[x]$.
(b) (2 points) Is the regular 24-gon constructible by straightedge and compass? Justify your answer.
(c) (2 points) Show that there are precisely 7 quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Problem 4. Let $f(x)=x^{4}+a x^{2}+b \in \mathbf{Q}[x]$.
(a) (2 points) Show that the roots of f in a splitting field have the form $\pm \alpha, \pm \beta$ and that $(\alpha \beta)^{2} \in \mathbf{Q}$.
(b) (2 points) Show that $f(x)$ is irreducible over \mathbf{Q} if and only if none of $\alpha^{2}, \alpha+\beta$ and $\alpha-\beta$ lie in \mathbf{Q}.
(c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8 .
(d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group $\mathbf{Z} / 2 \times \mathbf{Z} / 2$ if and only if $\alpha \beta \in \mathbf{Q}$.

Problem 5.

(a) (1 point) Show that $x^{3}-2$ divides $x^{343}-x$ in $\mathbf{F}_{7}[x]$.
(b) (2 points) Show that the 8th cyclotomic polynomial $\Phi_{8}(x)=x^{4}+1$ divides $x^{p^{2}}-x$ in $\mathbf{F}_{p}[x]$ for every odd prime p.

