FINAL EXAM

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^{13} - 15 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q} .
- (c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Problem 2. Let f and L be as in Problem 1.

- (a) (2 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbb{Q})$ is solvable.
- (c) (2 points) Show that there is a unique extension K/\mathbb{Q} of degree 12 which is contained in L.
- (d) (2 points) Show that there is a unique quadratic extension F/\mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Problem 3. Let $\Phi_{24}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 24th roots of unity. Let ζ be a root of $\Phi_{24}(x)$ in some finite extension of \mathbf{Q} .

- (a) (2 points) Show that for every prime p, the reduction of $\Phi_{24}(x)$ modulo p is reducible in $\mathbf{F}_p[x]$.
- (b) (2 points) Is the regular 24-gon constructible by straightedge and compass? Justify your answer.
- (c) (2 points) Show that there are precisely 7 quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Problem 4. Let $f(x) = x^4 + ax^2 + b \in \mathbf{Q}[x]$.

- (a) (2 points) Show that the roots of f in a splitting field have the form $\pm \alpha, \pm \beta$ and that $(\alpha \beta)^2 \in \mathbf{Q}$.
- (b) (2 points) Show that f(x) is irreducible over \mathbf{Q} if and only if none of α^2 , $\alpha + \beta$ and $\alpha \beta$ lie in \mathbf{Q} .
- (c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8.
- (d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group $\mathbb{Z}/2 \times \mathbb{Z}/2$ if and only if $\alpha\beta \in \mathbb{Q}$.

Problem 5.

- (a) (1 point) Show that $x^3 2$ divides $x^{343} x$ in $\mathbf{F}_7[x]$.
- (b) (2 points) Show that the 8th cyclotomic polynomial $\Phi_8(x) = x^4 + 1$ divides $x^{p^2} x$ in $\mathbf{F}_p[x]$ for every odd prime p.