
Galois Theory (MM8005) Wushi Goldring 21 August 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let f(x) = x13 − 15 ∈ Q[x].
(a) (1 point) Show that f is irreducible over Q.
(b) (2 points) Give an explicit description of a splitting field L for f over Q.
(c) (1 point) Compute [L : Q]. Justify your answer.
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible over Z since it is Eisenstein at both p = 3 and p = 5.
Hence f is irreducible over Q by Gauss’ Lemma.

(b) Let ζ be a primitive 13th root of unity and let α be a root of f , both in some extension of Q.
Set L := Q(α, ζ). Then we claim L is a splitting field of f . The roots of f are the ζiα with i ∈ Z/13.
So f splits completely over L.

The polynomial f is separable, because every irreducible polynomial over a field of characteristic
zero is so; or, more directly, the derivative of f is 13x12, so we see that f is relatively prime to its
derivative, hence separable, over any field of characteristic not 3, 5 or 13. So let β be another root of
f , distinct from α. Then α/β is not 1 but is a root of x13 − 1; whence α/β is a primitive 13th root
of unity. Any subfield of L over which f splits must contain α, β, so it must also contain a primitive
13th root of unity, so it contains all 13th roots of unity, so it contains L.

(c) The degree of a composite is always at most the product of the degrees, so [L : Q] ≤ [Q(ζ) :
Q)][Q(α) : Q] = 12·13 = 156. Since 12, 13 are relatively prime, we have equality by the multiplicativity
of degrees in towers. So [L : Q] = 12 · 13 = 156.

(d) A finite extension is Galois if and only if it is the splitting field of some separable polynomial.
Since L is the splitting field of f over Q, and we have checked that f is separable, the extension L is
Galois over Q. �
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Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for Gal(L/Q).
(b) (2 points) Show that Gal(L/Q) is solvable.
(c) (2 points) Show that there is a unique extension K/Q of degree 12 which is contained in L.
(d) (2 points) Show that there is a unique quadratic extension F/Q contained in L and describe F

as Q(
√
D) for some integer D.

Solution. (a) Let G = Gal(L/Q). Every automorphism g ∈ G of L must take α to a root of f and
ζ to a primitive 13th root of unity, and every automorphism is determined by its values on {α, ζ} .
This gives 13 · 12 possible automorphisms. Since L/Q is Galois, we have |G| = [L : Q] = 156, so every
possibility described actually gives an automorphism.

We want a generator of (Z/13)× = Gal(Q(ζ)/Q), so that sending ζ to this power and fixing α will
give an automorphism of order 12. Since 212/2 = 64 6≡ 1 (mod 13) and 212/4 = 8 6≡ 1 (mod 13), one
has that 2 is a generator of (Z/13)× (also called a primitive root mod 13). So setting σ(ζ) = ζ2 and
σ(α) = α defines an automorphism σ ∈ G of order 12 which fixes α.

Define τ ∈ G by τ(α) = ζα and τ(ζ) = ζ. Then τ has order 13. Since σ, τ have relatively prime
order, together they generate a group of order at least the product of their orders, hence they generate
all of G.

Let N = 〈τ〉. Then N is a 13-Sylow of G and N is normal in G by Sylow’s theorem. Thus
στσ−1 = τ j for some j. We compute that j = 2:

στσ−1(α) = στ(α) = σ(ζα) = σ(ζ)σ(α) = ζ2α.

Hence
στσ−1 = τ2

and
G = 〈σ, τ | σ12 = τ13 = 1, στσ−1 = τ2〉

describes G by generators and relations (also known as a presentation of G).
(b) The normal subgroup N is solvable since it is cyclic. Let H = 〈σ〉. Then G/N ∼= H is cyclic, so

it is solvable too. If G is a group with a normal subgroup N , then G is solvable if and only if both N
and G/N are solvable. So G is solvable.

Alternatively, f is solvable by radicals because each of its roots is obtained, by definition, by a
simple radical extension. Hence G is solvable by the dictionary between solvable Galois groups and
polynomials solvable by radicals.

(c) By the Galois correspondence, an extension K/Q of degree 12 corresponds to a subgroup of G
of index 12 i.e., of order 13. Such a subgroup is a 13-Sylow, hence equals N . So the uniqueness of K
follows from the uniqueness of a 13-Sylow in G.

(d) A quadratic F/Q contained in L corresponds to a subgroupM of G of index 2. ThenM contains
a unique 13-Sylow by Sylow’s theorem, hence N is the unique 13-Sylow of M as well. Passing over to
fixed fields, N ⊂M says that

F = LM ⊂ K = LN .

Since Gal(K/Q) ∼= H is cyclic, it has a unique subgroup of index 2, which corresponds to the unique
quadratic F/Q contained in K which is also the unique quadratic F/Q contained in L.

We have seen in class that Q(
√
p∗) is the unique quadratic F/Q contained in Q(µp), where p∗ is p

if p ≡ 1 (mod 4) and −p if p ≡ 3 (mod 4). Since 13 ≡ 1 (mod 4), we conclude that F = Q(
√

13). �
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Problem 3. Let Φ24(x) ∈ Z[x] be the cyclotomic polynomial of primitive 24th roots of unity. Let ζ be
a root of Φ24(x) in some finite extension of Q.

(a) (2 points) Show that for every prime p, the reduction of Φ24(x) modulo p is reducible in Fp[x].
(b) (2 points) Is the regular 24-gon constructible by straightedge and compass? Justify your answer.
(c) (2 points) Show that there are precisely 7 quadratic extensions of Q contained in Q(ζ).

Solution. (a) We have seen that, given p not dividing n, the cyclotomic polynomial Φn(x) factors in
Fp[x] as a product of ϕ(n)/d polynomials of degree d, where d is the order of p in (Z/n)×.

One has ϕ(24) = ϕ(8)ϕ(3) = 4 · 2 = 8. By contrast, given x ∈ (Z/24)×, one has x2 = 1 (e.g., use
the Chinese Remainder Theorem). Hence Φ24(x) is reducible modulo all primes p not dividing 24.

Finally x24 − 1 = (x3 − 1)8 in F2[x] and x24 − 1 = (x8 − 1)3 in F3[x].
(b) The regular 24-gon is constructible by straightedge and compass because 24 is a power of 2 times

a Fermat prime.
(c) We have Gal(Q(ζ)/Q) = (Z/24)× ∼= (Z/2)3. Quotients of (Z/2)3 of order 2 are the same as

quotient lines of the F2-vector space F3
2. Quotient lines are in duality with one-dimensional subspaces.

The number of one dimensional subspaces in an Fp-vector space of dimension n is (pn−1)/(p−1). But
we can also compute directly that in an Fp-vector space of dimension 3, the number of two-dimensional
subspaces is

(p3 − 1)(p3 − p)
(p2 − 1)(p2 − p)

= p2 + p+ 1 =
p3 − 1

p− 1
.

For p = 2, this gives 7 quotient lines. By the Galois correspondence, the 7 quotients of order 2
correspond to 7 quadratic F/Q contained in Q(ζ). �
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Problem 4. Let f(x) = x4 + ax2 + b ∈ Q[x].
(a) (2 points) Show that the roots of f in a splitting field have the form ±α,±β and that (αβ)2 ∈ Q.
(b) (2 points) Show that f(x) is irreducible over Q if and only if none of α2, α + β and α − β lie

in Q.
(c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8.
(d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group

Z/2× Z/2 if and only if αβ ∈ Q.

Solution. Note that this problem is adapted from [1, §14.6 Problem 13].
(a) One option is to solve explicitly by radicals using the quadratic formula, since f is quadratic in

the variable y = x2.
Without computation: If γ is a root of f in an extension, then so is −γ, because f is even (only has

even degree terms). It remains to show that (αβ)2 is rational.
If either α or β is zero, then (αβ)2 = 0 is rational. So we may assume αβ 6= 0. If f is not separable,

the (a) implies that f(x) = (x− α)2(x+ α)2 = (x2 − α2)2 and b = α4 = (αβ)2 so (αβ)2 ∈ Q.
Finally, suppose f is separable. If σ ∈ Gal(f), then σ is determined by its action on α, β and

σ(αβ) = ±αβ. Hence Gal(f) fixes (αβ)2, so (αβ)2 ∈ Q.
(b) By (a), f has no irreducible factor of degree 3 over Q. So f is reducible if and only if f has a

degree 2 factor over Q (which may be reducible), if and only if

g(x) = (x− γ)(x− δ) = x2 − (γ + δ)x+ γδ ∈ Q[x]

for two roots γ, δ ∈ {±α,±β} of f .
In particular, if f is reducible, then γ + δ ∈ Q for some choice of γ, δ and γ + δ ranges over

−α2,±(α+ β),±(α− β),−β2. So one of these is in Q which implies that one of α2, α+ β, α− β is in
Q, because −β2 ∈ Q implies α2 ∈ Q by (αβ)2 ∈ Q of (a).

Conversely, we may assume f is separable; else f is reducible because we are in characteristic zero.
If α2 ∈ Q, then g(x) = x2 − α2 ∈ Q[x] is a quadratic factor. If α + β ∈ Q, then we claim that
g(x) = x2 − (α + β)x + αβ ∈ Q[x] is a quadratic factor over Q. To see this, it suffices to show that
α + β ∈ Q implies αβ ∈ Q. But α + β ∈ Q If α + β ∈ Q, then α + β is fixed by Gal(f) (here we
use that f is separable), so σα, σβ ∈ {α, β} and the two values are distinct, so σ(αβ) = αβ for all
σ ∈ Gal(f), whence αβ ∈ Q.

The case where α − β ∈ Q is analogous, with g(x) = x2 − (α − β)x − αβ in place of g(x) =
x2 − (α+ β)x+ αβ.

(c) Let G = Gal(f). Since an automorphism satisfies σ(−α) = −σ(α), a σ ∈ G is determined by its
values on α, β. There are 4 choices ±α,±β for σ(α), and then both ±σ(α) are excluded as choices for
σ(β), so there are at most 2 choices remaining for σ(β). This shows |G| ≤ 8. On the other hand, given
f irreducible of degree n, we know that Gal(f) acts transitively on the set of its n distinct roots in a
splitting field, hence n divides |Gal(f)| by the Orbit-Stabilizer theorem. So 4 divides |G| in our case,
whence |G| = 4 or 8.

(d) Assume αβ ∈ Q. Then every σ ∈ Gal(f) is uniquely determined by its action on α, so Gal(f)
has order 4 (the order is divisible by 4 by irreducibility of f as in (c)). For every γ ∈ {±α,±β} there
exists a unique σ ∈ Gal(f) mapping α to γ. For each of these choices, one sees that σ2 = 1. For
example, if σ(α) = β, then σ(β) = α because σ(αβ) = αβ by virtue of αβ ∈ Q. Since Gal(f) has
order 4 it is abelian, and since every element satisfies σ2 = 1, we conclude Gal(f) ∼= Z/2× Z/2. �

4



Galois Theory (MM8005) Wushi Goldring 21 August 2019

Problem 5.
(a) (1 point) Show that x3 − 2 divides x343 − x in F7[x].
(b) (2 points) Show that the 8th cyclotomic polynomial Φ8(x) = x4 + 1 divides xp2 − x in Fp[x] for

every odd prime p.

Solution. (a) We know that xpn − x factors over Fp as a product of all the irreducible polynomials in
Fp[x] whose degree divides n. Since 23 ≡ 1 (mod 7), 2 cannot be a cube mod 7 (or check directly that
2 is not a cube mod 7). Since the degree of x3 − 2 is at most 3 and it doesn’t have a root in F7, it is
irreducible over F7. Therefore x3 − 2 divides x73 − x in F7[x].

(b) We know that, for p not dividing n, the cyclotomic polynomial Φn(x) factors in Fp[x] as a
product ϕ(n)/d irreducible polynomials of degree d, where d is the order of p in (Z/n)×. Since
(Z/8)× ∼= Z/2 × Z/2, every element in it has order dividing 2 and we conclude that x4 + 1 divides
xp

2 − 1 for every odd prime p. �
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