FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of $12.5 / 30$ or higher to pass this exam. More precisely, the following scale will be used:

A: $[26.5,30]$, B: $[23,26.5), \mathrm{C}:[19.5,23), \mathrm{D}:[16,19.5)$, $\mathrm{E}:[12.5,16), \mathrm{F}:[0,12.5)$.
Problem 1. Let $f(x)=x^{13}-15 \in \mathbf{Q}[x]$.
(a) (1 point) Show that f is irreducible over \mathbf{Q}.
(b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q}.
(c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible over \mathbf{Z} since it is Eisenstein at both $p=3$ and $p=5$. Hence f is irreducible over \mathbf{Q} by Gauss' Lemma.
(b) Let ζ be a primitive 13th root of unity and let α be a root of f, both in some extension of \mathbf{Q}. Set $L:=\mathbf{Q}(\alpha, \zeta)$. Then we claim L is a splitting field of f. The roots of f are the $\zeta^{i} \alpha$ with $i \in \mathbf{Z} / 13$. So f splits completely over L.

The polynomial f is separable, because every irreducible polynomial over a field of characteristic zero is so; or, more directly, the derivative of f is $13 x^{12}$, so we see that f is relatively prime to its derivative, hence separable, over any field of characteristic not 3,5 or 13 . So let β be another root of f, distinct from α. Then α / β is not 1 but is a root of $x^{13}-1$; whence α / β is a primitive 13 th root of unity. Any subfield of L over which f splits must contain α, β, so it must also contain a primitive 13th root of unity, so it contains all 13th roots of unity, so it contains L.
(c) The degree of a composite is always at most the product of the degrees, so $[L: \mathbf{Q}] \leq[\mathbf{Q}(\zeta)$: $\mathbf{Q})][\mathbf{Q}(\alpha): \mathbf{Q}]=12 \cdot 13=156$. Since 12,13 are relatively prime, we have equality by the multiplicativity of degrees in towers. So $[L: \mathbf{Q}]=12 \cdot 13=156$.
(d) A finite extension is Galois if and only if it is the splitting field of some separable polynomial. Since L is the splitting field of f over \mathbf{Q}, and we have checked that f is separable, the extension L is Galois over \mathbf{Q}.

Problem 2. Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for $\operatorname{Gal}(L / \mathbf{Q})$.
(b) (2 points) Show that $\operatorname{Gal}(L / \mathbf{Q})$ is solvable.
(c) (2 points) Show that there is a unique extension K / \mathbf{Q} of degree 12 which is contained in L.
(d) (2 points) Show that there is a unique quadratic extension F / \mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.
Solution. (a) Let $G=\operatorname{Gal}(L / \mathbf{Q})$. Every automorphism $g \in G$ of L must take α to a root of f and ζ to a primitive 13 th root of unity, and every automorphism is determined by its values on $\{\alpha, \zeta\}$. This gives $13 \cdot 12$ possible automorphisms. Since L / \mathbf{Q} is Galois, we have $|G|=[L: \mathbf{Q}]=156$, so every possibility described actually gives an automorphism.

We want a generator of $(\mathbf{Z} / 13)^{\times}=\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$, so that sending ζ to this power and fixing α will give an automorphism of order 12. Since $2^{12 / 2}=64 \not \equiv 1(\bmod 13)$ and $2^{12 / 4}=8 \not \equiv 1(\bmod 13)$, one has that 2 is a generator of $(\mathbf{Z} / 13)^{\times}$(also called a primitive root $\bmod 13$). So setting $\sigma(\zeta)=\zeta^{2}$ and $\sigma(\alpha)=\alpha$ defines an automorphism $\sigma \in G$ of order 12 which fixes α.

Define $\tau \in G$ by $\tau(\alpha)=\zeta \alpha$ and $\tau(\zeta)=\zeta$. Then τ has order 13. Since σ, τ have relatively prime order, together they generate a group of order at least the product of their orders, hence they generate all of G.

Let $N=\langle\tau\rangle$. Then N is a 13-Sylow of G and N is normal in G by Sylow's theorem. Thus $\sigma \tau \sigma^{-1}=\tau^{j}$ for some j. We compute that $j=2$:

$$
\sigma \tau \sigma^{-1}(\alpha)=\sigma \tau(\alpha)=\sigma(\zeta \alpha)=\sigma(\zeta) \sigma(\alpha)=\zeta^{2} \alpha .
$$

Hence

$$
\sigma \tau \sigma^{-1}=\tau^{2}
$$

and

$$
G=\left\langle\sigma, \tau \mid \sigma^{12}=\tau^{13}=1, \sigma \tau \sigma^{-1}=\tau^{2}\right\rangle
$$

describes G by generators and relations (also known as a presentation of G).
(b) The normal subgroup N is solvable since it is cyclic. Let $H=\langle\sigma\rangle$. Then $G / N \cong H$ is cyclic, so it is solvable too. If G is a group with a normal subgroup N, then G is solvable if and only if both N and G / N are solvable. So G is solvable.

Alternatively, f is solvable by radicals because each of its roots is obtained, by definition, by a simple radical extension. Hence G is solvable by the dictionary between solvable Galois groups and polynomials solvable by radicals.
(c) By the Galois correspondence, an extension K / \mathbf{Q} of degree 12 corresponds to a subgroup of G of index 12 i.e., of order 13 . Such a subgroup is a 13 -Sylow, hence equals N. So the uniqueness of K follows from the uniqueness of a 13 -Sylow in G.
(d) A quadratic F / \mathbf{Q} contained in L corresponds to a subgroup M of G of index 2 . Then M contains a unique 13 -Sylow by Sylow's theorem, hence N is the unique 13 -Sylow of M as well. Passing over to fixed fields, $N \subset M$ says that

$$
F=L^{M} \subset K=L^{N} .
$$

Since $\operatorname{Gal}(K / \mathbf{Q}) \cong H$ is cyclic, it has a unique subgroup of index 2 , which corresponds to the unique quadratic F / \mathbf{Q} contained in K which is also the unique quadratic F / \mathbf{Q} contained in L.

We have seen in class that $\mathbf{Q}\left(\sqrt{p^{*}}\right)$ is the unique quadratic F / \mathbf{Q} contained in $\mathbf{Q}\left(\mu_{p}\right)$, where p^{*} is p if $p \equiv 1(\bmod 4)$ and $-p$ if $p \equiv 3(\bmod 4)$. Since $13 \equiv 1(\bmod 4)$, we conclude that $F=\mathbf{Q}(\sqrt{13})$.

Problem 3. Let $\Phi_{24}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 24 th roots of unity. Let ζ be a root of $\Phi_{24}(x)$ in some finite extension of \mathbf{Q}.
(a) (2 points) Show that for every prime p, the reduction of $\Phi_{24}(x)$ modulo p is reducible in $\mathbf{F}_{p}[x]$.
(b) (2 points) Is the regular 24 -gon constructible by straightedge and compass? Justify your answer.
(c) (2 points) Show that there are precisely 7 quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Solution. (a) We have seen that, given p not dividing n, the cyclotomic polynomial $\Phi_{n}(x)$ factors in $\mathbf{F}_{p}[x]$ as a product of $\varphi(n) / d$ polynomials of degree d, where d is the order of p in $(\mathbf{Z} / n)^{\times}$.

One has $\varphi(24)=\varphi(8) \varphi(3)=4 \cdot 2=8$. By contrast, given $x \in(\mathbf{Z} / 24)^{\times}$, one has $x^{2}=1$ (e.g., use the Chinese Remainder Theorem). Hence $\Phi_{24}(x)$ is reducible modulo all primes p not dividing 24 .

Finally $x^{24}-1=\left(x^{3}-1\right)^{8}$ in $\mathbf{F}_{2}[x]$ and $x^{24}-1=\left(x^{8}-1\right)^{3}$ in $\mathbf{F}_{3}[x]$.
(b) The regular 24 -gon is constructible by straightedge and compass because 24 is a power of 2 times a Fermat prime.
(c) We have $\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})=(\mathbf{Z} / 24)^{\times} \cong(\mathbf{Z} / 2)^{3}$. Quotients of $(\mathbf{Z} / 2)^{3}$ of order 2 are the same as quotient lines of the \mathbf{F}_{2}-vector space \mathbf{F}_{2}^{3}. Quotient lines are in duality with one-dimensional subspaces. The number of one dimensional subspaces in an \mathbf{F}_{p}-vector space of dimension n is $\left(p^{n}-1\right) /(p-1)$. But we can also compute directly that in an \mathbf{F}_{p}-vector space of dimension 3, the number of two-dimensional subspaces is

$$
\frac{\left(p^{3}-1\right)\left(p^{3}-p\right)}{\left(p^{2}-1\right)\left(p^{2}-p\right)}=p^{2}+p+1=\frac{p^{3}-1}{p-1} .
$$

For $p=2$, this gives 7 quotient lines. By the Galois correspondence, the 7 quotients of order 2 correspond to 7 quadratic F / \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Problem 4. Let $f(x)=x^{4}+a x^{2}+b \in \mathbf{Q}[x]$.
(a) (2 points) Show that the roots of f in a splitting field have the form $\pm \alpha, \pm \beta$ and that $(\alpha \beta)^{2} \in \mathbf{Q}$.
(b) (2 points) Show that $f(x)$ is irreducible over \mathbf{Q} if and only if none of $\alpha^{2}, \alpha+\beta$ and $\alpha-\beta$ lie in \mathbf{Q}.
(c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8 .
(d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group $\mathbf{Z} / 2 \times \mathbf{Z} / 2$ if and only if $\alpha \beta \in \mathbf{Q}$.
Solution. Note that this problem is adapted from [1, §14.6 Problem 13].
(a) One option is to solve explicitly by radicals using the quadratic formula, since f is quadratic in the variable $y=x^{2}$.

Without computation: If γ is a root of f in an extension, then so is $-\gamma$, because f is even (only has even degree terms). It remains to show that $(\alpha \beta)^{2}$ is rational.

If either α or β is zero, then $(\alpha \beta)^{2}=0$ is rational. So we may assume $\alpha \beta \neq 0$. If f is not separable, the (a) implies that $f(x)=(x-\alpha)^{2}(x+\alpha)^{2}=\left(x^{2}-\alpha^{2}\right)^{2}$ and $b=\alpha^{4}=(\alpha \beta)^{2}$ so $(\alpha \beta)^{2} \in \mathbf{Q}$.

Finally, suppose f is separable. If $\sigma \in \operatorname{Gal}(f)$, then σ is determined by its action on α, β and $\sigma(\alpha \beta)= \pm \alpha \beta$. Hence $\operatorname{Gal}(f)$ fixes $(\alpha \beta)^{2}$, so $(\alpha \beta)^{2} \in \mathbf{Q}$.
(b) By (a), f has no irreducible factor of degree 3 over \mathbf{Q}. So f is reducible if and only if f has a degree 2 factor over \mathbf{Q} (which may be reducible), if and only if

$$
g(x)=(x-\gamma)(x-\delta)=x^{2}-(\gamma+\delta) x+\gamma \delta \in \mathbf{Q}[x]
$$

for two roots $\gamma, \delta \in\{ \pm \alpha, \pm \beta\}$ of f.
In particular, if f is reducible, then $\gamma+\delta \in \mathbf{Q}$ for some choice of γ, δ and $\gamma+\delta$ ranges over $-\alpha^{2}, \pm(\alpha+\beta), \pm(\alpha-\beta),-\beta^{2}$. So one of these is in \mathbf{Q} which implies that one of $\alpha^{2}, \alpha+\beta, \alpha-\beta$ is in \mathbf{Q}, because $-\beta^{2} \in \mathbf{Q}$ implies $\alpha^{2} \in \mathbf{Q}$ by $(\alpha \beta)^{2} \in \mathbf{Q}$ of (a).

Conversely, we may assume f is separable; else f is reducible because we are in characteristic zero. If $\alpha^{2} \in \mathbf{Q}$, then $g(x)=x^{2}-\alpha^{2} \in \mathbf{Q}[x]$ is a quadratic factor. If $\alpha+\beta \in \mathbf{Q}$, then we claim that $g(x)=x^{2}-(\alpha+\beta) x+\alpha \beta \in \mathbf{Q}[x]$ is a quadratic factor over \mathbf{Q}. To see this, it suffices to show that $\alpha+\beta \in \mathbf{Q}$ implies $\alpha \beta \in \mathbf{Q}$. But $\alpha+\beta \in \mathbf{Q}$ If $\alpha+\beta \in \mathbf{Q}$, then $\alpha+\beta$ is fixed by $\operatorname{Gal}(f)$ (here we use that f is separable), so $\sigma \alpha, \sigma \beta \in\{\alpha, \beta\}$ and the two values are distinct, so $\sigma(\alpha \beta)=\alpha \beta$ for all $\sigma \in \operatorname{Gal}(f)$, whence $\alpha \beta \in \mathbf{Q}$.

The case where $\alpha-\beta \in \mathbf{Q}$ is analogous, with $g(x)=x^{2}-(\alpha-\beta) x-\alpha \beta$ in place of $g(x)=$ $x^{2}-(\alpha+\beta) x+\alpha \beta$.
(c) Let $G=\operatorname{Gal}(f)$. Since an automorphism satisfies $\sigma(-\alpha)=-\sigma(\alpha)$, a $\sigma \in G$ is determined by its values on α, β. There are 4 choices $\pm \alpha, \pm \beta$ for $\sigma(\alpha)$, and then both $\pm \sigma(\alpha)$ are excluded as choices for $\sigma(\beta)$, so there are at most 2 choices remaining for $\sigma(\beta)$. This shows $|G| \leq 8$. On the other hand, given f irreducible of degree n, we know that $\operatorname{Gal}(f)$ acts transitively on the set of its n distinct roots in a splitting field, hence n divides $|\operatorname{Gal}(f)|$ by the Orbit-Stabilizer theorem. So 4 divides $|G|$ in our case, whence $|G|=4$ or 8 .
(d) Assume $\alpha \beta \in \mathbf{Q}$. Then every $\sigma \in \operatorname{Gal}(f)$ is uniquely determined by its action on α, so $\operatorname{Gal}(f)$ has order 4 (the order is divisible by 4 by irreducibility of f as in (c)). For every $\gamma \in\{ \pm \alpha, \pm \beta\}$ there exists a unique $\sigma \in \operatorname{Gal}(f)$ mapping α to γ. For each of these choices, one sees that $\sigma^{2}=1$. For example, if $\sigma(\alpha)=\beta$, then $\sigma(\beta)=\alpha$ because $\sigma(\alpha \beta)=\alpha \beta$ by virtue of $\alpha \beta \in \mathbf{Q}$. Since $\operatorname{Gal}(f)$ has order 4 it is abelian, and since every element satisfies $\sigma^{2}=1$, we conclude $\operatorname{Gal}(f) \cong \mathbf{Z} / 2 \times \mathbf{Z} / 2$.

Problem 5.

(a) (1 point) Show that $x^{3}-2$ divides $x^{343}-x$ in $\mathbf{F}_{7}[x]$.
(b) (2 points) Show that the 8th cyclotomic polynomial $\Phi_{8}(x)=x^{4}+1$ divides $x^{p^{2}}-x$ in $\mathbf{F}_{p}[x]$ for every odd prime p.
Solution. (a) We know that $x^{p^{n}}-x$ factors over \mathbf{F}_{p} as a product of all the irreducible polynomials in $\mathbf{F}_{p}[x]$ whose degree divides n. Since $2^{3} \equiv 1(\bmod 7), 2$ cannot be a cube $\bmod 7($ or check directly that 2 is not a cube $\bmod 7$). Since the degree of $x^{3}-2$ is at most 3 and it doesn't have a root in \mathbf{F}_{7}, it is irreducible over \mathbf{F}_{7}. Therefore $x^{3}-2$ divides $x^{7^{3}}-x$ in $\mathbf{F}_{7}[x]$.
(b) We know that, for p not dividing n, the cyclotomic polynomial $\Phi_{n}(x)$ factors in $\mathbf{F}_{p}[x]$ as a product $\varphi(n) / d$ irreducible polynomials of degree d, where d is the order of p in $(\mathbf{Z} / n)^{\times}$. Since $(\mathbf{Z} / 8)^{\times} \cong \mathbf{Z} / 2 \times \mathbf{Z} / 2$, every element in it has order dividing 2 and we conclude that $x^{4}+1$ divides $x^{p^{2}}-1$ for every odd prime p.

References

[1] D. Dummit and R. Foote. Abstract Algebra. John Wiley and Sons, 3 edition, 2003.

