Galois Theory (MMB8005) Wushi Goldring 21 August 2019

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to
carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5,30], B: [23,26.5), C: [19.5,23), D: [16,19.5), E: [12.5,16), F: [0,12.5).

Problem 1. Let f(z) = '3 — 15 € Qlx].

(a) (1 point) Show that f is irreducible over Q.

(b) (2 points) Give an explicit description of a splitting field L for f over Q.
(c) (1 point) Compute [L : Q]. Justify your answer.

(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible over Z since it is Eisenstein at both p = 3 and p = 5.
Hence f is irreducible over Q by Gauss’ Lemma.

(b) Let ¢ be a primitive 13th root of unity and let a be a root of f, both in some extension of Q.
Set L := Q(a, (). Then we claim L is a splitting field of f. The roots of f are the (‘o with i € Z/13.
So f splits completely over L.

The polynomial f is separable, because every irreducible polynomial over a field of characteristic
zero is so; or, more directly, the derivative of f is 1322, so we see that f is relatively prime to its
derivative, hence separable, over any field of characteristic not 3,5 or 13. So let 5 be another root of
f, distinct from a. Then «/3 is not 1 but is a root of ' — 1; whence a/3 is a primitive 13th root
of unity. Any subfield of L over which f splits must contain «, 8, so it must also contain a primitive
13th root of unity, so it contains all 13th roots of unity, so it contains L.

(c) The degree of a composite is always at most the product of the degrees, so [L : Q] < [Q(() :
Q)][Q(«) : Q] = 12-13 = 156. Since 12, 13 are relatively prime, we have equality by the multiplicativity
of degrees in towers. So [L: Q] =12-13 = 156.

(d) A finite extension is Galois if and only if it is the splitting field of some separable polynomial.
Since L is the splitting field of f over Q, and we have checked that f is separable, the extension L is
Galois over Q. O
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Problem 2. Let f and L be as in Problem 1.

(a) (2 points) Give generators and relations for Gal(L/Q).

(b) (2 points) Show that Gal(L/Q) is solvable.

(¢) (2 points) Show that there is a unique extension K/Q of degree 12 which is contained in L.
(d) (2 points) Show that there is a unique quadratic extension F/Q contained in L and describe F

as Q(V/'D) for some integer D.

Solution. (a) Let G = Gal(L/Q). Every automorphism g € G of L must take a to a root of f and
¢ to a primitive 13th root of unity, and every automorphism is determined by its values on {a,(} .
This gives 13- 12 possible automorphisms. Since L/Q is Galois, we have |G| = [L : Q] = 156, so every
possibility described actually gives an automorphism.

We want a generator of (Z/13)* = Gal(Q(({)/Q), so that sending ¢ to this power and fixing « will
give an automorphism of order 12. Since 2'%/2 = 64 # 1 (mod 13) and 2'%/4 = 8 # 1 (mod 13), one
has that 2 is a generator of (Z/13)* (also called a primitive root mod 13). So setting o(¢) = ¢? and
o(a) = a defines an automorphism o € G of order 12 which fixes a.

Define 7 € G by 7(a) = (a and 7(¢) = ¢. Then 7 has order 13. Since o, 7 have relatively prime
order, together they generate a group of order at least the product of their orders, hence they generate
all of G.

Let N = (7). Then N is a 13-Sylow of G and N is normal in G by Sylow’s theorem. Thus

oro~ ' =77 for some j. We compute that j = 2:

oro 1 (a) = o7(a) = o(Ca) = o(¢)o(a) = Ca.

Hence

and

B=1, oro7! =17

G=(o, 7|c%=1
describes G by generators and relations (also known as a presentation of G).

(b) The normal subgroup N is solvable since it is cyclic. Let H = (). Then G/N = H is cyclic, so
it is solvable too. If G is a group with a normal subgroup N, then G is solvable if and only if both N
and G/N are solvable. So G is solvable.

Alternatively, f is solvable by radicals because each of its roots is obtained, by definition, by a
simple radical extension. Hence G is solvable by the dictionary between solvable Galois groups and
polynomials solvable by radicals.

(c) By the Galois correspondence, an extension K/Q of degree 12 corresponds to a subgroup of G
of index 12 i.e., of order 13. Such a subgroup is a 13-Sylow, hence equals N. So the uniqueness of K
follows from the uniqueness of a 13-Sylow in G.

(d) A quadratic F//Q contained in L corresponds to a subgroup M of G of index 2. Then M contains
a unique 13-Sylow by Sylow’s theorem, hence N is the unique 13-Sylow of M as well. Passing over to
fixed fields, N C M says that

F=IMcK=1"L".
Since Gal(K/Q) = H is cyclic, it has a unique subgroup of index 2, which corresponds to the unique
quadratic F'/Q contained in K which is also the unique quadratic F//Q contained in L.
We have seen in class that Q(1/p¥) is the unique quadratic F/Q contained in Q(g,), where p* is p

if p=1 (mod 4) and —p if p =3 (mod 4). Since 13 =1 (mod 4), we conclude that F = Q(+/13). O
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Problem 3. Let ®o4(x) € Z[x] be the cyclotomic polynomial of primitive 24th roots of unity. Let ¢ be
a root of ®oy(x) in some finite extension of Q.
(a) (2 points) Show that for every prime p, the reduction of ®24(x) modulo p is reducible in Flx].
(b) (2 points) Is the reqular 24-gon constructible by straightedge and compass? Justify your answer.
(¢) (2 points) Show that there are precisely 7 quadratic extensions of Q contained in Q(().

Solution. (a) We have seen that, given p not dividing n, the cyclotomic polynomial ®,,(x) factors in
F,[x] as a product of ¢(n)/d polynomials of degree d, where d is the order of p in (Z/n)*.

One has ¢(24) = p(8)p(3) = 4 -2 = 8. By contrast, given = € (Z/24)*, one has 22 = 1 (e.g., use
the Chinese Remainder Theorem). Hence ®94(x) is reducible modulo all primes p not dividing 24.

Finally 224 — 1 = (2® — 1)® in Fa[z] and 2** — 1 = (28 — 1)3 in F3[z].

(b) The regular 24-gon is constructible by straightedge and compass because 24 is a power of 2 times
a Fermat prime.

(c) We have Gal(Q(¢)/Q) = (Z/24)* = (Z/2)3. Quotients of (Z/2)3 of order 2 are the same as
quotient lines of the Fa-vector space F3. Quotient lines are in duality with one-dimensional subspaces.
The number of one dimensional subspaces in an F)-vector space of dimension n is (p" —1)/(p—1). But
we can also compute directly that in an Fj-vector space of dimension 3, the number of two-dimensional

subspaces is
@ - 1)@’ - p) P’ -1

(P* = 1)(p* —p) p—1"
For p = 2, this gives 7 quotient lines. By the Galois correspondence, the 7 quotients of order 2
correspond to 7 quadratic F'/Q contained in Q((). O
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Problem 4. Let f(x) = 2* + az? + b € Qla].
(a) (2 points) Show that the roots of f in a splitting field have the form +a, =83 and that (a3)? € Q.
(b) (2 points) Show that f(x) is irreducible over Q if and only if none of a?, o+ f and o — B3 lie
m Q.
(c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8.
(d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group
Z/2 x Z/2 if and only if a8 € Q.

Solution. Note that this problem is adapted from [1, §14.6 Problem 13].

(a) One option is to solve explicitly by radicals using the quadratic formula, since f is quadratic in
the variable y = 22.

Without computation: If v is a root of f in an extension, then so is —v, because f is even (only has
even degree terms). It remains to show that (a3)? is rational.

If either o or B is zero, then (af)? = 0 is rational. So we may assume a3 # 0. If f is not separable,
the (a) implies that f(z) = (z — a)?(z + a)? = (22 — a?)? and b = a* = (a8)? s0 (afB)? € Q.

Finally, suppose f is separable. If ¢ € Gal(f), then o is determined by its action on «,f and
o(af) = +aB. Hence Gal(f) fixes (afB)?, so (af3)? € Q.

(b) By (a), f has no irreducible factor of degree 3 over Q. So f is reducible if and only if f has a
degree 2 factor over Q (which may be reducible), if and only if

g(x) = (x =) (& = 0) =a® — (y + 6)z + 6 € Q[a]
for two roots 7,6 € {£a, =4} of f.

In particular, if f is reducible, then v + § € Q for some choice of v, and v + § ranges over
—a?, £(a+ B), £(a — ), —B%. So one of these is in Q which implies that one of a?, o+ 3, — 3 is in
Q, because —3? € Q implies o € Q by (aB)? € Q of (a).

Conversely, we may assume f is separable; else f is reducible because we are in characteristic zero.
If a®> € Q, then g(z) = 22 — o? € QJz] is a quadratic factor. If a + 3 € Q, then we claim that
g(z) = 2% — (a + B)xr + aff € Q[z] is a quadratic factor over Q. To see this, it suffices to show that
a+p € Qimplies af € Q. But a+ 5 € QIf a+ f € Q, then a + S is fixed by Gal(f) (here we
use that f is separable), so ca, 0 € {a, 8} and the two values are distinct, so o(af) = af for all
o € Gal(f), whence aff € Q.

The case where a — 8 € Q is analogous, with g(z) = 22 — (o — )z — af in place of g(z) =
22 — (a+ Bz + aB.

(c) Let G = Gal(f). Since an automorphism satisfies o(—a) = —o(«), a 0 € G is determined by its
values on «, 8. There are 4 choices +«, =0 for o(a), and then both +o(«a) are excluded as choices for
o (), so there are at most 2 choices remaining for o (). This shows |G| < 8. On the other hand, given
f irreducible of degree n, we know that Gal(f) acts transitively on the set of its n distinct roots in a
splitting field, hence n divides | Gal(f)| by the Orbit-Stabilizer theorem. So 4 divides |G| in our case,
whence |G| =4 or 8.

(d) Assume af € Q. Then every o € Gal(f) is uniquely determined by its action on «, so Gal(f)
has order 4 (the order is divisible by 4 by irreducibility of f as in (c)). For every v € {+a, £} there
exists a unique o € Gal(f) mapping o to . For each of these choices, one sees that o? = 1. For
example, if o(a) = 3, then o(8) = « because o(af) = af by virtue of a5 € Q. Since Gal(f) has
order 4 it is abelian, and since every element satisfies 02 = 1, we conclude Gal(f) 2 Z/2 x Z/2. O
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Problem 5.
(a) (1 point) Show that z® — 2 divides 23*3 — x in Fr[x].
(b) (2 points) Show that the 8th cyclotomic polynomial ®g(x) = z* + 1 divides aP° — x in F,[z] for
every odd prime p.

Solution. (a) We know that zP" — z factors over F,, as a product of all the irreducible polynomials in
F,[z] whose degree divides n. Since 23 =1 (mod 7), 2 cannot be a cube mod 7 (or check directly that
2 is not a cube mod 7). Since the degree of 3 — 2 is at most 3 and it doesn’t have a root in F7, it is
irreducible over F7. Therefore 3 — 2 divides 27 — z in F[z].

(b) We know that, for p not dividing n, the cyclotomic polynomial ®,(x) factors in Fplz] as a
product ¢(n)/d irreducible polynomials of degree d, where d is the order of p in (Z/n)*. Since
(Z/8)* = Z/2 x Z/2, every element in it has order dividing 2 and we conclude that x* 4+ 1 divides

zP* — 1 for every odd prime p. O
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