FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^{13} - 15 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f over \mathbf{Q} .
- (c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Solution. (a) The polynomial f is irreducible over \mathbf{Z} since it is Eisenstein at both p=3 and p=5. Hence f is irreducible over \mathbf{Q} by Gauss' Lemma.

(b) Let ζ be a primitive 13th root of unity and let α be a root of f, both in some extension of \mathbf{Q} . Set $L := \mathbf{Q}(\alpha, \zeta)$. Then we claim L is a splitting field of f. The roots of f are the $\zeta^i \alpha$ with $i \in \mathbf{Z}/13$. So f splits completely over L.

The polynomial f is separable, because every irreducible polynomial over a field of characteristic zero is so; or, more directly, the derivative of f is $13x^{12}$, so we see that f is relatively prime to its derivative, hence separable, over any field of characteristic not 3,5 or 13. So let β be another root of f, distinct from α . Then α/β is not 1 but is a root of $x^{13} - 1$; whence α/β is a primitive 13th root of unity. Any subfield of L over which f splits must contain α, β , so it must also contain a primitive 13th root of unity, so it contains all 13th roots of unity, so it contains L.

- (c) The degree of a composite is always at most the product of the degrees, so $[L:\mathbf{Q}] \leq [\mathbf{Q}(\zeta):\mathbf{Q})][\mathbf{Q}(\alpha):\mathbf{Q}] = 12\cdot 13 = 156$. Since 12, 13 are relatively prime, we have equality by the multiplicativity of degrees in towers. So $[L:\mathbf{Q}] = 12\cdot 13 = 156$.
- (d) A finite extension is Galois if and only if it is the splitting field of some separable polynomial. Since L is the splitting field of f over \mathbf{Q} , and we have checked that f is separable, the extension L is Galois over \mathbf{Q} .

Problem 2. Let f and L be as in Problem 1.

- (a) (2 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbf{Q})$ is solvable.
- (c) (2 points) Show that there is a unique extension K/\mathbb{Q} of degree 12 which is contained in L.
- (d) (2 points) Show that there is a unique quadratic extension F/\mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Solution. (a) Let $G = \operatorname{Gal}(L/\mathbf{Q})$. Every automorphism $g \in G$ of L must take α to a root of f and ζ to a primitive 13th root of unity, and every automorphism is determined by its values on $\{\alpha, \zeta\}$. This gives $13 \cdot 12$ possible automorphisms. Since L/\mathbf{Q} is Galois, we have $|G| = [L : \mathbf{Q}] = 156$, so every possibility described actually gives an automorphism.

We want a generator of $(\mathbf{Z}/13)^{\times} = \operatorname{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q})$, so that sending ζ to this power and fixing α will give an automorphism of order 12. Since $2^{12/2} = 64 \not\equiv 1 \pmod{13}$ and $2^{12/4} = 8 \not\equiv 1 \pmod{13}$, one has that 2 is a generator of $(\mathbf{Z}/13)^{\times}$ (also called a primitive root mod 13). So setting $\sigma(\zeta) = \zeta^2$ and $\sigma(\alpha) = \alpha$ defines an automorphism $\sigma \in G$ of order 12 which fixes α .

Define $\tau \in G$ by $\tau(\alpha) = \zeta \alpha$ and $\tau(\zeta) = \zeta$. Then τ has order 13. Since σ, τ have relatively prime order, together they generate a group of order at least the product of their orders, hence they generate all of G.

Let $N = \langle \tau \rangle$. Then N is a 13-Sylow of G and N is normal in G by Sylow's theorem. Thus $\sigma \tau \sigma^{-1} = \tau^j$ for some j. We compute that j = 2:

$$\sigma \tau \sigma^{-1}(\alpha) = \sigma \tau(\alpha) = \sigma(\zeta \alpha) = \sigma(\zeta)\sigma(\alpha) = \zeta^2 \alpha.$$

Hence

$$\sigma \tau \sigma^{-1} = \tau^2$$

and

$$G = \langle \sigma, \ \tau \mid \sigma^{12} = \tau^{13} = 1, \ \sigma \tau \sigma^{-1} = \tau^2 \rangle$$

describes G by generators and relations (also known as a presentation of G).

(b) The normal subgroup N is solvable since it is cyclic. Let $H = \langle \sigma \rangle$. Then $G/N \cong H$ is cyclic, so it is solvable too. If G is a group with a normal subgroup N, then G is solvable if and only if both N and G/N are solvable. So G is solvable.

Alternatively, f is solvable by radicals because each of its roots is obtained, by definition, by a simple radical extension. Hence G is solvable by the dictionary between solvable Galois groups and polynomials solvable by radicals.

- (c) By the Galois correspondence, an extension K/\mathbf{Q} of degree 12 corresponds to a subgroup of G of index 12 i.e., of order 13. Such a subgroup is a 13-Sylow, hence equals N. So the uniqueness of K follows from the uniqueness of a 13-Sylow in G.
- (d) A quadratic F/\mathbf{Q} contained in L corresponds to a subgroup M of G of index 2. Then M contains a unique 13-Sylow by Sylow's theorem, hence N is the unique 13-Sylow of M as well. Passing over to fixed fields, $N \subset M$ says that

$$F = L^M \subset K = L^N.$$

Since $\operatorname{Gal}(K/\mathbf{Q}) \cong H$ is cyclic, it has a unique subgroup of index 2, which corresponds to the unique quadratic F/\mathbf{Q} contained in K which is also the unique quadratic F/\mathbf{Q} contained in L.

We have seen in class that $\mathbf{Q}(\sqrt{p^*})$ is the unique quadratic F/\mathbf{Q} contained in $\mathbf{Q}(\mu_p)$, where p^* is p if $p \equiv 1 \pmod{4}$ and -p if $p \equiv 3 \pmod{4}$. Since $13 \equiv 1 \pmod{4}$, we conclude that $F = \mathbf{Q}(\sqrt{13})$. \square

Problem 3. Let $\Phi_{24}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive 24th roots of unity. Let ζ be a root of $\Phi_{24}(x)$ in some finite extension of \mathbf{Q} .

- (a) (2 points) Show that for every prime p, the reduction of $\Phi_{24}(x)$ modulo p is reducible in $\mathbf{F}_p[x]$.
- (b) (2 points) Is the regular 24-gon constructible by straightedge and compass? Justify your answer.
- (c) (2 points) Show that there are precisely 7 quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Solution. (a) We have seen that, given p not dividing n, the cyclotomic polynomial $\Phi_n(x)$ factors in $\mathbf{F}_p[x]$ as a product of $\varphi(n)/d$ polynomials of degree d, where d is the order of p in $(\mathbf{Z}/n)^{\times}$.

One has $\varphi(24) = \varphi(8)\varphi(3) = 4 \cdot 2 = 8$. By contrast, given $x \in (\mathbb{Z}/24)^{\times}$, one has $x^2 = 1$ (e.g., use the Chinese Remainder Theorem). Hence $\Phi_{24}(x)$ is reducible modulo all primes p not dividing 24.

Finally $x^{24} - 1 = (x^3 - 1)^8$ in $\mathbf{F}_2[x]$ and $x^{24} - 1 = (x^8 - 1)^3$ in $\mathbf{F}_3[x]$.

- (b) The regular 24-gon is constructible by straightedge and compass because 24 is a power of 2 times a Fermat prime.
- (c) We have $Gal(\mathbf{Q}(\zeta)/\mathbf{Q}) = (\mathbf{Z}/24)^{\times} \cong (\mathbf{Z}/2)^3$. Quotients of $(\mathbf{Z}/2)^3$ of order 2 are the same as quotient lines of the \mathbf{F}_2 -vector space \mathbf{F}_2^3 . Quotient lines are in duality with one-dimensional subspaces. The number of one dimensional subspaces in an \mathbf{F}_p -vector space of dimension n is $(p^n-1)/(p-1)$. But we can also compute directly that in an \mathbf{F}_p -vector space of dimension 3, the number of two-dimensional subspaces is

$$\frac{(p^3-1)(p^3-p)}{(p^2-1)(p^2-p)} = p^2 + p + 1 = \frac{p^3-1}{p-1}.$$

For p=2, this gives 7 quotient lines. By the Galois correspondence, the 7 quotients of order 2 correspond to 7 quadratic F/\mathbf{Q} contained in $\mathbf{Q}(\zeta)$.

Problem 4. Let $f(x) = x^4 + ax^2 + b \in \mathbf{Q}[x]$.

- (a) (2 points) Show that the roots of f in a splitting field have the form $\pm \alpha, \pm \beta$ and that $(\alpha \beta)^2 \in \mathbf{Q}$.
- (b) (2 points) Show that f(x) is irreducible over \mathbf{Q} if and only if none of α^2 , $\alpha + \beta$ and $\alpha \beta$ lie in \mathbf{Q} .
- (c) (2 points) Assume f is irreducible. Show that the Galois group of f has order 4 or 8.
- (d) (2 points) Assume f is irreducible. Show that the Galois group of f is the Klein 4-group $\mathbb{Z}/2 \times \mathbb{Z}/2$ if and only if $\alpha\beta \in \mathbb{Q}$.

Solution. Note that this problem is adapted from [1, §14.6 Problem 13].

(a) One option is to solve explicitly by radicals using the quadratic formula, since f is quadratic in the variable $y = x^2$.

Without computation: If γ is a root of f in an extension, then so is $-\gamma$, because f is even (only has even degree terms). It remains to show that $(\alpha\beta)^2$ is rational.

If either α or β is zero, then $(\alpha\beta)^2 = 0$ is rational. So we may assume $\alpha\beta \neq 0$. If f is not separable, the (a) implies that $f(x) = (x - \alpha)^2(x + \alpha)^2 = (x^2 - \alpha^2)^2$ and $b = \alpha^4 = (\alpha\beta)^2$ so $(\alpha\beta)^2 \in \mathbf{Q}$.

Finally, suppose f is separable. If $\sigma \in \operatorname{Gal}(f)$, then σ is determined by its action on α, β and $\sigma(\alpha\beta) = \pm \alpha\beta$. Hence $\operatorname{Gal}(f)$ fixes $(\alpha\beta)^2$, so $(\alpha\beta)^2 \in \mathbf{Q}$.

(b) By (a), f has no irreducible factor of degree 3 over \mathbf{Q} . So f is reducible if and only if f has a degree 2 factor over \mathbf{Q} (which may be reducible), if and only if

$$g(x) = (x - \gamma)(x - \delta) = x^2 - (\gamma + \delta)x + \gamma\delta \in \mathbf{Q}[x]$$

for two roots $\gamma, \delta \in \{\pm \alpha, \pm \beta\}$ of f.

In particular, if f is reducible, then $\gamma + \delta \in \mathbf{Q}$ for some choice of γ, δ and $\gamma + \delta$ ranges over $-\alpha^2, \pm(\alpha + \beta), \pm(\alpha - \beta), -\beta^2$. So one of these is in \mathbf{Q} which implies that one of $\alpha^2, \alpha + \beta, \alpha - \beta$ is in \mathbf{Q} , because $-\beta^2 \in \mathbf{Q}$ implies $\alpha^2 \in \mathbf{Q}$ by $(\alpha\beta)^2 \in \mathbf{Q}$ of (a).

Conversely, we may assume f is separable; else f is reducible because we are in characteristic zero. If $\alpha^2 \in \mathbf{Q}$, then $g(x) = x^2 - \alpha^2 \in \mathbf{Q}[x]$ is a quadratic factor. If $\alpha + \beta \in \mathbf{Q}$, then we claim that $g(x) = x^2 - (\alpha + \beta)x + \alpha\beta \in \mathbf{Q}[x]$ is a quadratic factor over \mathbf{Q} . To see this, it suffices to show that $\alpha + \beta \in \mathbf{Q}$ implies $\alpha\beta \in \mathbf{Q}$. But $\alpha + \beta \in \mathbf{Q}$ If $\alpha + \beta \in \mathbf{Q}$, then $\alpha + \beta$ is fixed by $\mathrm{Gal}(f)$ (here we use that f is separable), so $\sigma\alpha, \sigma\beta \in \{\alpha, \beta\}$ and the two values are distinct, so $\sigma(\alpha\beta) = \alpha\beta$ for all $\sigma \in \mathrm{Gal}(f)$, whence $\alpha\beta \in \mathbf{Q}$.

The case where $\alpha - \beta \in \mathbf{Q}$ is analogous, with $g(x) = x^2 - (\alpha - \beta)x - \alpha\beta$ in place of $g(x) = x^2 - (\alpha + \beta)x + \alpha\beta$.

- (c) Let $G = \operatorname{Gal}(f)$. Since an automorphism satisfies $\sigma(-\alpha) = -\sigma(\alpha)$, a $\sigma \in G$ is determined by its values on α, β . There are 4 choices $\pm \alpha, \pm \beta$ for $\sigma(\alpha)$, and then both $\pm \sigma(\alpha)$ are excluded as choices for $\sigma(\beta)$, so there are at most 2 choices remaining for $\sigma(\beta)$. This shows $|G| \leq 8$. On the other hand, given f irreducible of degree n, we know that $\operatorname{Gal}(f)$ acts transitively on the set of its n distinct roots in a splitting field, hence n divides |G|(f) by the Orbit-Stabilizer theorem. So 4 divides |G| in our case, whence |G| = 4 or 8.
- (d) Assume $\alpha\beta \in \mathbf{Q}$. Then every $\sigma \in \operatorname{Gal}(f)$ is uniquely determined by its action on α , so $\operatorname{Gal}(f)$ has order 4 (the order is divisible by 4 by irreducibility of f as in (c)). For every $\gamma \in \{\pm \alpha, \pm \beta\}$ there exists a unique $\sigma \in \operatorname{Gal}(f)$ mapping α to γ . For each of these choices, one sees that $\sigma^2 = 1$. For example, if $\sigma(\alpha) = \beta$, then $\sigma(\beta) = \alpha$ because $\sigma(\alpha\beta) = \alpha\beta$ by virtue of $\alpha\beta \in \mathbf{Q}$. Since $\operatorname{Gal}(f)$ has order 4 it is abelian, and since every element satisfies $\sigma^2 = 1$, we conclude $\operatorname{Gal}(f) \cong \mathbf{Z}/2 \times \mathbf{Z}/2$. \square

Problem 5.

- (a) (1 point) Show that $x^3 2$ divides $x^{343} x$ in $\mathbf{F}_7[x]$.
- (b) (2 points) Show that the 8th cyclotomic polynomial $\Phi_8(x) = x^4 + 1$ divides $x^{p^2} x$ in $\mathbf{F}_p[x]$ for every odd prime p.

Solution. (a) We know that $x^{p^n} - x$ factors over \mathbf{F}_p as a product of all the irreducible polynomials in $\mathbf{F}_p[x]$ whose degree divides n. Since $2^3 \equiv 1 \pmod{7}$, 2 cannot be a cube mod 7 (or check directly that 2 is not a cube mod 7). Since the degree of $x^3 - 2$ is at most 3 and it doesn't have a root in \mathbf{F}_7 , it is irreducible over \mathbf{F}_7 . Therefore $x^3 - 2$ divides $x^{7^3} - x$ in $\mathbf{F}_7[x]$.

(b) We know that, for p not dividing n, the cyclotomic polynomial $\Phi_n(x)$ factors in $\mathbf{F}_p[x]$ as a product $\varphi(n)/d$ irreducible polynomials of degree d, where d is the order of p in $(\mathbf{Z}/n)^{\times}$. Since $(\mathbf{Z}/8)^{\times} \cong \mathbf{Z}/2 \times \mathbf{Z}/2$, every element in it has order dividing 2 and we conclude that $x^4 + 1$ divides $x^{p^2} - 1$ for every odd prime p.

References

[1] D. Dummit and R. Foote. Abstract Algebra. John Wiley and Sons, 3 edition, 2003.