
Galois Theory (MM7043) Wushi Goldring 2020-12-18

FINAL EXAM SOLUTIONS

Must be submitted, preferably by the course website, else by email, at the latest by:
16:00 on 2020-12-18 (unless you have been granted extra time)

1. Instructions

Justify your answers. Since this is an exceptional "zoom-pandemic-exam" you may use notes,
homework and texts associated with the course (tablet notes on the course website, the text by Dummit
& Foote), but you should not search on the internet for answers. You may e.g., use part of Problem 4
to do part of Problem 1, even if you are unsuccessful with that part of Problem 4. You may use part
(a) of a problem to do part (b) even if you have not solved (a), and so on. You can say "By Homework
3, problem 2,...". You do not need to restate the question in your solution. Please email me if you
have any questions during the exam.

Grading: This exam is worth 30 points. If you completed homework assignments, your homework
bonus (out of 3 points) will be added to your score. You need a score of 12.5/30 or higher to pass this
exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

2. Problems

There are 5 problems:

Problem 1 (5 points). Let f(x) = x11 − 29 ∈ Q[x].
(a) (1 point) Show that f is irreducible over Q.
(b) (2 points) Give an explicit description of a splitting field L for f over Q.
(c) (1 point) Compute [L : Q]. Justify your answer.
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f is irreducible over Z since it is Eisenstein at the prime p = 29. Hence
f is irreducible over Q by Gauss’ Lemma.

(b) Let ζ be a primitive 11th root of unity and let α be a root of f , both in some extension of Q.
Set L := Q(α, ζ). Then we claim L is a splitting field of f . The roots of f are the ζiα with i ∈ Z/11.
So f splits completely over L.

The polynomial f is separable, because every irreducible polynomial over a field of characteristic
zero is so; or, more directly, the derivative of f is 11x10, so we see that f is relatively prime to its
derivative, hence separable, over any field of characteristic not 3, 5 or 13. So let β be another root of
f , distinct from α. Then α/β is not 1 but is a root of x11 − 1; whence α/β is a primitive 11th root
of unity (since 11 is prime). Any subfield of L over which f splits must contain α, β, so it must also
contain a primitive 11th root of unity, so it contains all 11th roots of unity, so it contains L.

(c) The degree of a composite is always at most the product of the degrees, so

[L : Q] ≤ [Q(ζ) : Q)][Q(α) : Q] = 10 · 11 = 110.

Since 10, 11 are relatively prime, we have equality by the multiplicativity of degrees in towers. So
[L : Q] = 10 · 11 = 110.

(d) A finite extension is Galois if and only if it is the splitting field of some separable polynomial.
Since L is the splitting field of f over Q, and we have checked that f is separable, the extension L is
Galois over Q. �
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Problem 2 (7 points). Let f and L be as in Problem 1.
(a) (2 points) Give generators and relations for Gal(L/Q).
(b) (2 points) Show that Gal(L/Q) is solvable.
(c) (3 points) Show that there is a unique quadratic extension F/Q contained in L and describe F

as Q(
√
D) for some integer D.

Solution. (a) Let G = Gal(L/Q). Every automorphism g ∈ G of L must take α to a root of f and
ζ to a primitive 11th root of unity, and every automorphism is determined by its values on {α, ζ} .
This gives 11 · 10 possible automorphisms. Since L/Q is Galois, we have |G| = [L : Q] = 110, so every
possibility described actually gives an automorphism.

We want a generator of (Z/11)× = Gal(Q(ζ)/Q), so that sending ζ to this power and fixing α will
give an automorphism of order 10. Since 210/2 = 32 6≡ 1 (mod 11) and 210/5 = 4 6≡ 1 (mod 11), one
has that 2 is a generator of (Z/11)× (also called a primitive root mod 11). So setting σ(ζ) = ζ2 and
σ(α) = α defines an automorphism σ ∈ G of order 10 which fixes α.

Define τ ∈ G by τ(α) = ζα and τ(ζ) = ζ. Then τ has order 11. Since σ, τ have relatively prime
order, together they generate a group of order at least the product of their orders, hence they generate
all of G.

Let N = 〈τ〉. Then N is an 11-Sylow of G and N is normal in G by Sylow’s theorem. Thus
στσ−1 = τ j for some j. We compute that j = 2:

στσ−1(α) = στ(α) = σ(ζα) = σ(ζ)σ(α) = ζ2α.

Hence
στσ−1 = τ2

and
G = 〈σ, τ | σ10 = τ11 = 1, στσ−1 = τ2〉

describes G by generators and relations (also known as a presentation of G).
(b) The normal subgroup N is solvable since it is cyclic. Let H = 〈σ〉. Then G/N ∼= H is cyclic, so

it is solvable too. If G is a group with a normal subgroup N , then G is solvable if and only if both N
and G/N are solvable. So G is solvable.

Alternatively, f is solvable by radicals because each of its roots is obtained, by definition, by a
simple radical extension. Hence G is solvable by the dictionary between solvable Galois groups and
polynomials solvable by radicals.

(c) First we note that Q(ζ) = LN is the unique intermediate field Q ⊂ K ⊂ L such that K/Q has
degree 10. By the Galois correspondence, an extension K/Q of degree 10 corresponds to a subgroup
of G of index 10 i.e., of order 11. Such a subgroup is an 11-Sylow, hence equals N . So the uniqueness
of K follows from the uniqueness of an 11-Sylow in G. We see that Q(ζ)/Q is Galois, bot directly as
splitting field of x11 − 1 but also via the correspondence because N is normal in G.

A quadratic F/Q contained in L corresponds to a subgroup M of G of index 2. Then M contains a
unique 11-Sylow because an 11-Sylow of M is an 11-Sylow of G, and we determined N is the unique
11-Sylow of G (Variant: apply Sylow’s theorem to M). Hence N is also the unique 11-Sylow of M .
Passing over to fixed fields, N ⊂M corresponds to

F = LM ⊂ K = LN .

Since Gal(K/Q) ∼= H is cyclic, it has a unique subgroup of index 2, which corresponds to the unique
quadratic F/Q contained in K which is also the unique quadratic F/Q contained in L.

We have seen in class that Q(
√
p∗) is the unique quadratic F/Q contained in Q(µp), where p∗ is p if

p ≡ 1 (mod 4) and −p if p ≡ 3 (mod 4). Since 11 ≡ 3 (mod 4), we conclude that F = Q(
√
−11). �
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Problem 3 (6 points). On this problem, if you solve (b) you can cite it in (a). But (a) can also be
done by different methods which you may find easier (so you might be able to do (a) even if you don’t
manage (b)).

(a) (1 point) Show that a subgroup of S5 containing a 5-cycle and a transposition is all of S5.
(b) (2 point) Let p be a prime. Show that a subgroup of Sp containing a p-cycle and a transposition

is all of Sp.
(c) (1 point) Prove or give a counterexample to the following statement: "For every integer n ≥ 2,

if a subgroup H of Sn contains an n-cycle and a transposition, then H = Sn".
(d) (2 point) Assume that f ∈ Q[x] is irreducible of degree 5, that f is solvable by radicals and that

the discriminant of f is negative. What is the order of Gal(f)?

Solution. (a) One way is to apply the solution to (b) below. Here is another way: Let P be a 5-Sylow
of S5. Computing the number of p-cycles in Sp, then the number of p-Sylows in Sp, we find as in
Abstract Algebra that the normalizer NS5(P ) has order 20 and that it is generated by a 4-cycle and a
generator of P . It follows that all the elements of order 2 in NS5(P ) are of type (2, 2), so that NS5(P )
contains no transposition. Therefore, if H ⊂ S5 is a subgroup containing P and a transposition, then
the order of H is > 20, since it is divisible by 2 and 5, and a group of order 10 or 20 has a normal
5-Sylow. Hence H = S5.

(b) Let τ ∈ Sp be a transposition and let σ be a p-cycle. We have g〈σ, τ〉g−1 = 〈gσg−1, gτg−1〉. So
we may assume that σ = (12 · · · p) (but we may not assume also that τ = (12), for we may not be
able to conjugate σ and τ to these values simultaneously, even though we can achieve each conjugation
separately). Let τ = (ab). Then

στσ−1 = (σ(a)σ(b)) = (a+ 1 b+ 1),

where a + 1, b + 1 are interpreted (mod p). The orbit of 〈σ〉 acting on τ has size p since p is prime
and the size of the orbit divides the size of the group (orbit-stabilizer, Lagrange). The orbit consists of
the p transpositions (c d) satisfying |c− d| ≡ |b− a| (mod p). Then every c ∈ Z/p appears in precisely
2 of these p transpositions, namely, (c c + b − a) and c c + a − b), where again b − a and a − b are
(mod p). Removing 1 of the p transpositions, say removing (a b) we are left with p− 1 transpositions;
now all but two c = a and c = b still appear in 2 of the transpositions, while c = a and c = b only
appear in one transposition.

We order the p − 1 transpositions as follows: Put (a (a + a − b)) first, then the unique other
transposition among the p − 1 in which a + a − b = 2a − b occurs and continue in this way, so that
the jth and j + 1 transpositions in our ordering share one member. The last transposition left will be
(b (b+ b− a)). Then our list is

(a 2a− b), (2a− b 3a− 2b) · · · (b 2b− a),

where a−b is added to each component as we move one to the right, and adding (p−1)(a−b) (mod p)
is the same as subtracting a− b (mod p).

Then conjugation by

g =

(
1 2 3 · · · p− 1 p
a 2a− b 3a− 2b · · · 3b− 2a 2b− a

)
simultaneously takes

(12), (23), · · · , (p− 1 p)

to

(a 2a− b), (2a− b 3a− 2b) · · · (b 2b− a),

or equivalently g−1 conjugates

(a 2a− b), (2a− b 3a− 2b) · · · (b 2b− a),

to
(12), (23), · · · , (p− 1 p)

So these two sets of p − 1 transpositions generate subgroups of the same size. But we know from
abstract algebra that

(12), (23), · · · , (n− 1 n)

generates Sn for any n (prime or not), because we can write any transposition as a product of these
‘elementary’ ones. So the subgroup generated by σ, τ is Sp.
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(c) Here is a counterexample for n = 4: Let τ = (13) and σ = (1234). Then

τστ−1 = (3214) = (1432) = σ−1,

so σ, τ generate a dihedral group of order 8 inside S4 (so not all of S4).
(d) We claim that Gal(f) is a Frobenius group F20 of order 20; in other words, Gal(f) is the normalizer

of a 5-Sylow subgroup of S5 (the unique 5-Sylow that Gal(f) contains). Since f is irreducible over a
field of characteristic zero, f is separable. Since f is irreducible of prime degree p = 5, its Galois group
contains a p-cycle. So Gal(f) contains a 5-cycle. Since f is solvable by radicals Gal(f) is solvable, so
Gal(f) does not contain A5 (as A5 is non-abelian and simple). Since Disc(f) < 0, the discriminant is
not a square in Q, so Gal(f) is not contained in A5. Hence Gal(f) is neither Z/5 nor dihedral D10 of
order 10 (as in (a), an element of order 2 normalizing a 5-Sylow of S5 is of type (2, 2), hence even).
The only option left among the transitive subgroups of S5 is F20 of order 20. �

4



Galois Theory (MM7043) Wushi Goldring 2020-12-18

Problem 4 (4 points).
(a) (1 points) Let f(x) = xn − x + b ∈ Z[x] and let q be a prime divisor of b. Show that f is

separable in Fq[x] if and only if q does not divide n− 1.
(b) (3 points) Show that the Galois group Gal(f) ⊂ S13 of f(x) = x13 − x+ 385 over Q contains a

13-cycle, as well as elements of cycle type

(2, 2, 2), (2, 2, 2, 2), and (2, 2, 2, 2, 2)

(here e.g., (2, 2, 2) means a product of three disjoint transpositions).

Solution. (a) The derivative of f is f ′(x) = nxn−1 − 1. One has f ≡ xn − x (mod q) since q|b.
Now (f, f ′) 6= 1 in Fq[x] if and only if (f, xf ′) 6= (x), which is if and only (xf ′ − f, f) 6= x. But
xf ′ − f = (n− 1)xn.

Alternatively, the formula for the discriminant of a trinomial xn+ax+b (covered in exercise session)
gives that

Disc(f) = (−1)n(n−1)/2[(nn)bn−1 + (−1)n−1(n− 1)n−1an)],

so in our case (with a = −1 and q|b), one has

Disc(f) ≡ ±(n− 1)n−1 (mod q)

so Disc(f) = 0 in Fq if and only if q divides n− 1.
(b) We use the method of reducing f modulo different primes p not dividing Disc(f) to find cycle

types in Gal(f). Since f is an Artin-Schreier polynomial mod p = 13 (of the form xp− x+ a, a ∈ F×p ),
f is irreducible in F13[x]. So Gal(f) contains a 13-cycle.

Note that 385 = 5 · 7 · 11. So we reduce mod 5, 7, 11; by (a) f is separable mod these primes and
reduces to x13−x = x(x12− 1). We know that xn− 1 is the product of all the cyclotomic polynomials
Φd(x) over all divisors d|n. We have seen that Φd(x) factors mod p, for p not dividing d, as a product
of ϕ(d)/r irreducible factors, each of degree r, where r is the order of p mod d.

Note that every element x ∈ (Z/12)× satisfies x2 = 1. For p = 5, we have p ≡ 1 (mod 4), but p 6≡ 1
mod each of the divisors 3, 6, 12. So p has order 1 mod d = 4, but order 2 mod 3, 6 and 12. So f
reduces mod 5 to a product of linear factors times 1 + 1 + 2 = 4 irreducible quadratics (so the number
of linear factors is 5, counting x, which also corresponds to the divisors d = 1, 2, 4 with multiplicities
1, 1, 2, plus 1 for x). This gives an element of cycle type (2, 2, 2, 2) in Gal(f). Similarly, reduction mod
7 gives an element of type (2, 2, 2) because 7 ≡ 1 mod 3 and 6 but 6≡ 1 mod 4 and 12. Finally, the
reduction of f mod 11 factors as a product of 3 linear factors and 5 irreducible quadratics, giving an
element of cycle type (2, 2, 2, 2, 2). �
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Problem 5 (8 points). Let ζn be a primitive nth root of unity in some extension of Q.
(a) (2 points) Find mζ7+ζ

−1
7 ,Q(x).

(b) (1 point) Is cos(2π/7) + 5 constructible by straightedge and compass?
(c) (2 points) Let p be a prime different from 7. Show that mζ7+ζ

−1
7 ,Q(x) is irreducible in Fp[x] if

p 6≡ ±1 (mod 7) and that otherwise mζ7+ζ
−1
7 ,Q(x) splits completely in Fp[x].

(d) (2 points) Recall that 97 is prime. Let F×,397 be the subgroup of cubes in F×97. Define

α =
∑

a∈F×,3
97

ζa97.

Determine the degree of α over Q.
(e) (1 points) Let α be the element defined in (d). Is α solvable by radicals? Justify your answer.

Solution. Let α = ζ7 + ζ−17 ; this is the sum of all powers of ζ7 which are cubes in (Z/7)×. Let
β := ζ27 + ζ−27 and γ := ζ37 + ζ−37 . For a ∈ (Z/7)×, define σa ∈ Gal(Q(ζ7)/Q) by σa : ζ7 7→ ζa7 . Then
σ3(α) = γ and σ2(α) = β, so α, β, γ are Galois conjugates. Moreover, they are fixed by the subgroup
〈σ−1〉 of cubes. So α, β, γ satisfy the same irreducible polynomial of degree 3 over Q.

Let f(x) := mζ7+ζ
−1
7

(x). The x2 term of f is

−(α+ β + γ) = −(ζ7 + · · ·+ ζ67 ) = +1.

The constant term of f is −αβγ; one can multiply out explicitly the 8 terms, but it is not necessary:
The 8 terms will be of the form ζj , we know that the sum is rational as it is fixed by Galois, and the
one and only way to write a rational number b in the basis ζ7, . . . , ζ67 is to take all coefficients equal to
−b. So the 8 terms must comprise precisely 2 which are ζ7 = 1 and six which make ζ7 + · · ·+ ζ67 = −1.
So the constant term is −(2 − 1) = −1. The coefficient of x is αβ + αγ + βγ, a sum of 12 terms ζj ,
none of which is 1, so the sum is −2. Hence

f(x) = x3 + x2 − 2x− 1.

(b) Note that cos(2π/7) and cos(2π/7) + 5 generate the same extension of Q since they differ by
a rational number; this extension is Q(α) since 2 cos θ = eiθ + e−iθ. Hence cos(2π/7) + 5 is not
constructible by straightedge and compass, since it has degree 3, which is not a power of 2, over Q.

(c) One has p ≡ ±1 (mod 7) if and only if p is (nonzero and) a cube mod 7. If p is not a cube mod
7, then the Frobenius x 7→ xp maps α to β (resp. γ) and its square x 7→ xp

2 maps α to γ (resp. β) if
p ≡ ±2 (mod 7) (resp. p ≡ ±3 (mod 7)). So α, β, γ are again Galois conjugates and f is irreducible
mod p.

Conversely,if p is a cube mod 7, then Frobenius fixes each of α, β, γ, so α, β, γ ∈ Fp, since we know
the Galois group of a splitting field of f is a finite extension of Fp, hence its Galois group is cyclic
generated by Frobenius. So α, β, γ are fixed by Galois, hence lie in the base field.

Remarks: To make sense of α, β, γ (mod p) we have two options: (1) We can consider the ring Z[ζ7]
and reduce modulo a maximal ideal containing p as explained in class, or (2) We can take a splitting
field of x7 − 1 over Fp, take a primitive ζ7 in there, form α, β, γ there and do the whole argument in
that finite extension of Fp (and our objects will be those obtained by reduction mod p via (1)).

(d) The degree of α over Q is 3 because α is fixed by the subgroup of cubes (as in (a)) which has
index 3, and if g is a generator of F×97, then α, gα, g

2α are all distinct, because ζ97, . . . , ζ9697 is a basis of
Q(ζ97)/Q. So Gal(Q(ζ97)/Q(α)) is precisely the subgroup of cubes.

(e) Yes, α is solvable by radicals because Q(α)/Q is a cyclic extension, hence solvable (its Galois
group is a quotient of the Galois group Gal(Q(ζ97)/Q) ∼= Z/96; hence Gal(Q(α)/Q) ∼= Z/3). �
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