Suggested solutions: Econometric methods (MT5014) 2019-01-16
 9-14

Problem 1

(A) A time series $\left\{r_{t}\right\}$ is weakly stationary if neither $E\left(r_{t}\right)$ nor $\operatorname{Cov}\left(r_{t}, r_{t-l}\right)$ depends on t (where l is an arbitrary integer); see also Tsay p. 30.
(B) Since the coefficient in front of r_{t-1} is 0.4 , which satisfies $|0.4|<1$, this time-series is weakly stationary (see Tsay p. 39). Hence by taking expectation, i.e $E\left(r_{t}\right)=E\left(0.1+0.4 r_{t-1}+a_{t}\right)$, and using weak stationary and $E\left(a_{t}\right)=0$ we find $E\left(r_{t}\right)=0.1+0.4 E\left(r_{t}\right)$. Solving for $E\left(r_{t}\right)$ gives $E\left(r_{t}\right)=0.1 / 0.6=1 / 6$.

Similarly, we find $V\left(r_{t}\right)=0.4^{2} V\left(r_{t-1}\right)+V\left(a_{t}\right)$. Using weak stationary and $V\left(a_{t}\right)=1$ we find $V\left(r_{t}\right)=1 /\left(1-0.4^{2}\right)$.
(C) Consider the $\mathrm{AR}(1)$ time-series in (B) but change the coefficient 0.4 to 1 and the coefficient 0.1 to 0 , then you have a definition of random walk; see also Tsay p. 72.

Problem 2

This relies on Tsay around p. 54-56.
(A) The forecast is $\hat{r}_{3}(1)=0.3+0.8 r_{3}=0.3+0.8 \cdot 0.2=0.46$.
(B) The forecast is $\hat{r}_{3}(2)=0.3+0.8 \hat{r}_{3}(1)=0.3+0.8 \cdot 0.46=0.668$. The forecast error is,

$$
e_{3}(2)=a_{5}+0.8 a_{4}
$$

Hence, the associated variance is $V\left(e_{3}(2)\right)=V\left(a_{5}\right)+V\left(0.8 a_{5}\right)=\left(1+0.8^{2}\right) V\left(a_{t}\right)=$ 0.164 .
(C) The 1 step ahead forecast is,

$$
\hat{r}_{3}(1)=0.3+0.8 r_{3} .
$$

The 2 step ahead forecast is

$$
\hat{r}_{3}(2)=0.3+0.8 \hat{r}_{3}(1)=0.3+0.8\left(0.3+0.8 r_{3}\right)
$$

The 3 step ahead forecast is

$$
\hat{r}_{3}(3)=0.3+0.8 \hat{r}_{3}(2)=0.3+0.8\left(0.3+0.8\left(0.3+0.8 r_{3}\right)\right) .
$$

The 4 step ahead forecast is

$$
\hat{r}_{4}(3)=0.3+0.8 \hat{r}_{3}(3)=0.3+0.8\left(0.3+0.8\left(0.3+0.8\left(0.3+0.8 r_{3}\right)\right)\right)
$$

Continuing in this way clearly gives

$$
\lim _{n \rightarrow \infty} \hat{r}_{3}(n)=0.3\left(1+0.8+0.8^{2}+\ldots\right)
$$

Recall that $\left(1+0.8+0.8^{2}+\ldots\right)=1 /(1-0.8)$. Recall the general formula for $E\left(r_{t}\right)$ for a weakly convering $\operatorname{AR}(1)$, which in this particular case gives $E\left(r_{t}\right)=0.3 /(1-0.8)$. It follows that $\lim _{n \rightarrow \infty} \hat{r}_{3}(n)=E\left(r_{t}\right)$ and we are done.

Problem 3

We use the Chow test of structural change (p. 76-77 in the compendium). The F-statistic is

$$
F=\frac{(18.3-(9.1+4.3)) / 3}{(9.1+4.3) /(100-2 * 3)}=11.4577
$$

Since the F-statistic is this large we can reject the hypothesis that the parameters are the same in the two sub-periods at a very small significance level (the exact significance level at which the hypothesis can be rejected can be looked up in a table for the F distribution). See p. 76-77 in the compendium for further details.

Problem 4

(A) a_{t} should be a sequence of serially uncorrelated random vectors with mean zero and a covariance matrix $\boldsymbol{\Sigma}$ (which is typically positive definite) - Tsay p. 399.
(B) It is always weakly stationary (due to the assumption that the covariance matrix $\boldsymbol{\Sigma}$ exists) - Tsay p. 417-418.
(C) See Tsay p. 419.
(D) A feedback relationship - Tsay p. 419.

Problem 5

(A) Heteroskedasticity.
(B) It is unbiased. This can be seen by using the formula for the OLS estimate and the assumption that the expected values of the errors $\tilde{\varepsilon}_{j}$ are zero. Hint: see
the last equation on p .70 in the compendium.
(C) The GLS formula is (p. 89 in the compendium)

$$
\hat{\boldsymbol{\beta}}_{G M M}=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y}
$$

where for the model in the problem we have $\boldsymbol{\Omega}=\operatorname{diag}\left(e^{2 X_{1}}, \ldots, e^{2 X_{n}}\right)$, and

$$
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{cc}
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right] \\
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
\end{gathered}
$$

(D) It is BLUE (p. 90 in the compendium).

Problem 6

(A) It is not unbiased. To see this use that

$$
\hat{\boldsymbol{\beta}}_{O L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{\beta}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{\varepsilon}
$$

and that we have not assumed that $E[\varepsilon \mid \mathbf{X}]$ is zero.
(B) See p. 116 in the compendium.

