Solution to exam in Econometric Methods (MT5014), 13 February 2020

Problem 1

a) See in compendium, chapter 2.2.2.
b) Unbiasedness does not depend on the size of the data sample, see page 38 in the compendium.
c) Residuals are $\boldsymbol{e}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}$ and see point 1 . on page 28 in the compendium.
d) 1. Heteroscedasticity. $\hat{\boldsymbol{\beta}}$ are unbiased, consistent but not effective.
2. Autocorrelation. $\widehat{\boldsymbol{\beta}}$ are unbiased, consistent but not effective.
3. Collinearity. The matrix $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible so we cannot estimate $\boldsymbol{\beta}$.
4. No stable $\widehat{\boldsymbol{\beta}}$ over all observations (no parameter constancy).

Problem 2

a) Heteroscedasticity. Estimator of $\boldsymbol{\beta}$ is unbiased and consistent but not effective.
b) It is unbiased. See the last equation on page 70 in the compendium.
c) GLS-estimator of $\boldsymbol{\beta}$ in this model is $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y}$, where $\boldsymbol{\Omega}=\operatorname{diag}\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$.
d) It is BLUE (Theorem 5.1 in compendium).

Problem 3

The unrestricted RSS are $\mathbf{e}_{1}^{T} \mathbf{e}_{1}=30-\left[\begin{array}{ll}10 & 20\end{array}\right]\left[\begin{array}{ll}20 & 20 \\ 20 & 25\end{array}\right]^{-1}\left[\begin{array}{l}10 \\ 20\end{array}\right]=5$ and $\mathbf{e}_{2}^{T} \mathbf{e}_{2}=24-\left[\begin{array}{ll}8 & 20\end{array}\right]\left[\begin{array}{ll}10 & 10 \\ 10 & 20\end{array}\right]^{-1}\left[\begin{array}{c}8 \\ 20\end{array}\right]=3.2$.

To get the restricted RSS we need the design matrix for whole sample

$$
\begin{aligned}
& \mathbf{X}_{*}^{T} \mathbf{X}_{*}=\left[\begin{array}{ll}
20 & 20 \\
20 & 25
\end{array}\right]+\left[\begin{array}{ll}
10 & 10 \\
10 & 20
\end{array}\right]=\left[\begin{array}{ll}
30 & 30 \\
30 & 45
\end{array}\right], \mathbf{X}_{*}^{T} \mathbf{Y}_{*}=\left[\begin{array}{c}
10 \\
20
\end{array}\right]+\left[\begin{array}{c}
8 \\
20
\end{array}\right]=\left[\begin{array}{c}
18 \\
40
\end{array}\right], \\
& \mathbf{Y}_{*}^{T} \mathbf{Y}_{*}=30+24=54
\end{aligned}
$$

The Chow test of structural change is

$$
F=\frac{\left(\mathbf{e}_{*}^{T} \mathbf{e}_{*}-\left(\mathbf{e}_{1}^{T} \mathbf{e}_{1}+\mathbf{e}_{2}^{T} \mathbf{e}_{2}\right)\right) / \mathrm{k}}{\left(\mathbf{e}_{1}^{T} \mathbf{e}_{1}+\mathbf{e}_{2}^{T} \mathbf{e}_{2}\right) /(\mathrm{n}-2 \mathrm{k})}=\frac{(10.933-5-3.2) / 2}{(5+3.2) / 26}=4.333
$$

The 5% critical value is $\mathrm{F}_{0.95}(2,26)=3.37$. We reject the hypothesis (at 5% significance level) that urban and rural areas have the same structure.

Problem 4

Let $Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\varepsilon_{t}-\theta_{1} \varepsilon_{t-1} \quad(*)$.
By squaring both sides of the above equation and taking expectations we get
$\gamma_{0}\left(1-\phi_{1}^{2}-\phi_{2}^{2}\right)=2 \phi_{1} \phi_{2} \gamma_{1}+\sigma_{\varepsilon}^{2}\left(1-2 \phi_{1} \theta_{1}+\theta_{1}^{2}\right)$ where $\gamma_{0}=E\left[Y_{t}^{2}\right]=V\left(Y_{t}\right)$.
To get the above you should remember or show that $E\left[Y_{t-1} \varepsilon_{t-1}\right]=\sigma_{\varepsilon}^{2}$. Then multiplying both sides of $\left({ }^{*}\right)$ by successive lags of itself and taking expectations we get $\gamma_{1}\left(1-\phi_{2}\right)=\phi_{1} \gamma_{0}+\theta_{1} \sigma_{\varepsilon}^{2}$ and $\gamma_{k}=\phi_{1} \gamma_{k-1}+\phi_{2} \gamma_{k-2}$ for $k=2,3, \ldots$ where $\gamma_{l}=$ $\operatorname{Cov}\left(Y_{t}, Y_{t-l}\right), l>0$.
And the autocorrelations are $\rho_{0}=1, \rho_{1}=\frac{\gamma_{1}}{\gamma_{0}}, \rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}, k=2,3, \ldots$

Problem 5

a) See page 59 in the textbook of Tsay.
b) See page 62 in the textbook of Tsay.

Problem 6

a) See page 401 in the textbook of Tsay.
b) See page 402 in the textbook of Tsay.
c) See page 403 in the textbook of Tsay.

