
STOCKHOLMS UNIVERSITET,
MATEMATISKA INSTITUTIONEN,
Avd. Matematisk statistik

Suggested solutions:

Econometric methods (MT5014)

2021-01-07

Problem 1

We use restricted/unrestricted regression (ch. 3.4 in Tyrcha et al.). The unre-
stricted model is

Yj = β0 + β1X1j + β2X2j + β3X3j + β4X4j + β5X5j + εj .

Call the RSS of this model RSSU . The hypothesis can be written as

β3 = 3 + 3β2

and under this hypothesis we can write the model as

Yj = β0 + β1X1j + β2X2j + (3 + 3β2)X3j + β4X4j + β5X5j + εj

which is equivalent to

Yj − 3X3j = β0 + β1X1j + β2(X2j + 3X3j) + β4X4j + β5X5j + εj ,

which is thus the restricted model corresponding to the hypothesis. Call the
RSS of this model RSSR. Under the hypothesis it holds that

F =
(RSSR −RSSU )/1

RSSU/(100− 6)
=
RSSR −RSSU
RSSU/94

is F (1, 94)-distributed (cf. p 54); and given the values of RSSR and RSSU we
can therefore use the usual procedure to see if the data supports rejecting the
hypothesis or not.

Problem 2

(A)

E[xt] = a+ bE[xt−1] + cE[εt] + dE[εt−1]

E[xt] = a+ bE[xt]

E[xt] =
a

1− b
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where the second equality follows from {εt} being a white noise series and
E[xt] = E[xt−1] since {xt} is assumed weakly stationary. Similarly,

V [xt] = V [a+ cεt] + V [bxt−1 + dεt−1]

= c2 + b2V [xt−1] + d2V [εt−1] + 2bdCov[xt−1, εt−1]

where the first equality follows since εt is independent of εt−1 and xt−1, and the
second equality follows since V [εt] = 1. Now

Cov[xt−1, εt−1] = E[xt−1εt−1]− E[xt−1]E[εt−1]

= E[xt−1εt−1]

= E[(a+ bxt−2 + cεt−1 + dεt−2)εt−1]

= cE[ε2t−1]

= cV [εt−1]

= c,

since E[εt−1] = 0 and V [εt−1] = 1. Finally, combining the above expressions we
have that

V [xt] = c2 + b2V [xt−1] + d2V [εt−1] + 2bcd

= c2 + b2V [xt] + d2 + 2bcd

=
c2 + d2 + 2bcd

1− b2
,

where we also used the weak stationarity of {xt}.

(B) Yes. Since {εt} is a white noise series, it is strictly stationary. Hence, {xt}
consists of a strictly stationary series shifted by a constant, again resulting in a
strictly stationary series.

(C) We have

xt+2 = a+ bxt+1 + cεt+2 + dεt+1

= a+ b(a+ bxt + cεt+1 + dεt) + cεt+2 + dεt+1

= a(1 + b) + b2xt + bdεt + (bc+ d)εt+1 + cεt+2.

Conditioned on xt and εt, the sum of the first three terms on the right hand
side of the last equality is a constant. Further, the sum of the two last terms is
Gaussian, since the sum of two Gaussian random variables again is Gaussian.
Hence, we have that

xt+2|xt, εt ∼ N(µ, σ2), with

µ = a(1 + b) + b2xt + bdεt

σ2 = (bc+ d)2 + c2

since εt+1 and εt+2 are independent, E[εt+1] = E[εt+2] = 0 and V [εt+1] =
V [εt+2] = 1.
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Problem 3

Using X̃j = aXj , we write the model fitted with measurement error as Yj =

α̂ + β̂X̃j + ej . It is now clear that the OLS-estimate for β with measurement
error is given by

β̂ =

∑
j(X̃j − X̃)(Yj − Y )∑

j(X̃j − X̃)2

=

∑
j(aXj − aX)(Yj − Y )∑

j(aXj − aX)2

=
1

a

∑
j(Xj −X)(Yj − Y )∑

j(Xj −X)2

=
1

a
β̂no error.

where β̂no error is the OLS estimate without measurement error. Similarly, the
OLS estimate for α with measurement error is given by

α̂ = Y − β̂X̃

= Y − β̂aX

= Y − β̂aX

= Y − 1

a
β̂no erroraX

= Y − β̂no errorX

= α̂no error.

(We conclude that the measurement error affects only the estimate of β.)

Problem 4

(A) The 1 step ahead forecast is

r̂8(1) = E[r9|F8]

= E[0.2 + 0.4r8 + 1a8 + a9|F8]

= 0.2 + 0.4r8 + a8 + E[a9|F8]

= 0.2 + 0.4r8 + a8

= 0.2 + 0.4 ∗ 0.4 + 0.1 = 0.4600.

.
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(B) The 2 step ahead forecast is

r̂8(2) = E[r10|F8]

= E[φ0 + 0.4r9 + θa9 + a10|F8]

= 0.2 + E[0.4r9|F8]

= 0.2 + 0.4E[r9|F8]

= 0.2 + 0.4r̂8(1)

= 0.2 + 0.4 ∗ 0.4600 = 0.3840.

The forecast error is

e8(2) = r10 − r̂8(2)

= (0.2 + 0.4r9 + θa9 + a10)− (0.2 + 0.4 ∗ 0.4600)

= (0.4r9 + a9 + a10)− 0.4 ∗ 0.4600

= 0.4r9 + a9 + a10 − 0.4 ∗ 0.4600

= 0.4(0.2 + 0.4r8 + a8 + a9) + a9 + a10 − 0.4 ∗ 0.4600

= 0.4(0.2 + 0.4 ∗ 0.4 + 0.1 + a9) + a9 + a10 − 0.4 ∗ 0.4600

= C + 1.4a9 + a10

where C is an easily found constant that we do not need (C = 0). Hence,
V (e8(2)) = V (1.4a9 + a10) = (1.42 + 1)σ2 = 2.96σ2.

(C) Using the parameter values in the problem we find r9 = 0.4r8+a9. Similarly,
r10 = 0.4r9 + a10 = 0.4(0.4r8 + a9) + a10 = 0.42r8 + 0.4a9 + a10 and then
r11 = 0.4(0.42r8 +0.4a9 +a10)+a11 = 0.43r8 +0.42a9 +0.4a10 +a11. Continuing
this way we find, for arbitrary large l,

r8+l = 0.4lr8 + 0.4l−1a9 + 0.4l−2a10 + 0.4l−3a11 + ...+ 0.40a8+l.

The forecast r̂8(l) can be computed recursively (cf. p. 56 in Tsay) as a constant
depending on r8 = 0.4 (we do not need to know the value of this constant
however). Hence, the variance of the forecast error with lag l is given by

V (e8(l)) = V (r8+l − r̂8(l))

= V (0.4lr8 + 0.4l−1a9 + 0.4l−2a10 + 0.4l−3a11 + ...+ 0.40a8+l)

= V (0.4l−1a9 + 0.4l−2a10 + 0.4l−3a11 + ...+ 0.40a8+l)

= 0.16l−1V (a9) + 0.16l−2V (a10) + 0.16l−3V (a11) + ...+ 0.160V (a8+l)

= σ2(0.16l−1 + 0.16l−2 + 0.16l−3 + ...+ 0.160).

Since the sum in the parenthesis above converges to 1/(1 − 0.16) = 1.1905 as
l→∞, it holds that liml→∞ V (e8(l)) = 1.1905σ2.

Problem 5

The GLS formula (p. 89 in the compendium) is in this case

[α̂GLS , β̂GLS ]T = (XTΩ−1X)−1XTΩ−1Y
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where Ω = diag(12, 22, ..., n2), and

X =

1 X1

...
...

1 Xn



Y =

Y1...
Yn

 .
Let β = [α, β]T . Using the introduced notation we may write the model as
Y = Xβ + ε. We find

[α̂GLS , β̂GLS ]T = (XTΩ−1X)−1XTΩ−1Y

= (XTΩ−1X)−1XTΩ−1(Xβ + ε)

= β + (XTΩ−1X)−1XTΩ−1ε

= [α, β]T + (XTΩ−1X)−1XTΩ−1ε

Using classical assumption E[ε|X] = 0 we find that E[[α̂GLS , β̂GLS ]|X] = [α, β],
and it follows that the estimators are unbiased. We use the formula on p. 90
(and that in our case σ2 = 1) to find

V ([α̂GLS , β̂GLS ]T |X) = (XTΩ−1X)−1

Using the expressions for Ω and X above with n = 3 and the values for Xi given
in the question, and basic matrix calculations we find: Ω−1 = diag(1/12, 1/22, 1/32) =
diag(1/2, 1/4, 1/9) and

X =

1 1
1 2
1 4

 .
More calculations give

(XTΩ−1X) =

[
49
36

70
36

70
36

136
36

]
and we conclude that

V ([α̂GLS , β̂GLS ]T |X) = (XTΩ−1X)−1 =

[
136
49

−10
7−10

7 1

]
Hence, V (β̂GLS |X) = 1.

Problem 6

Using basic probability (see also p. 111 in Tyrcha et al.) theory we find the
moment conditions corresponding to the first and second moments to be

E
(
Vj −

θ0 + 15

2

)
= 0, E

(
V 2
j −

θ20 + 15θ0 + 152

3

)
= 0,
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where we know that θ0 < 15 (since the RV is distributed uniformly on the
interval [θ0, 15] this must be so).

Using the first moment as moment condition means that we estimate θ0

by setting
∑10
j=1

1
10

(
vj − θ̂0+15

2

)
= 0, where the summation is taken over the

sample, i.e. v1 = 8.87, v2 = 5.99 and so on (note that 10 is the sample size).

Solving this equation gives θ̂0 = 2
∑10
j=1

vj
10 − 15 = 2v̄ − 15 = 2.514.

Using notation from p. 115 (Tyrcha et al.) we find that the moments above

correspond to f1(vj , θ) = vj − θ+15
2 and f2(vj , θ) = v2j − θ2+15θ+152

3 . When W
is the identity matrix we find (similar to Example 7.8 in Tyrcha et al.)

Q10(θ) =

 10∑
j=1

vj −
θ + 15

2

2

+

 10∑
j=1

v2j −
θ2 + 15θ + 152

3

2

.

=

(
8.7570− θ + 15

2

)2

+

(
88.3580− θ2 + 15θ + 152

3

)2

.

The estimate that we are looking for is now given by θ̂0 = argminθ<15Qn(θ)
(easily solved with a computer); where the restriction θ < 15 comes from the
fact that 15 is the upper limit of the interval on which Vj is uniformly distributed
(we could also have used the restriction θ ≤ 4.27 which is the smallest value in
the sample).
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