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Problem 1

Set

Ω =

 1 0.5 0
0.5 1 0.5
0 0.5 1


and

X =

1 X1

1 X2

1 X3

 =

1 2
1 3
1 2


Use the formula on p. 90 in Tyrcha et al. (in this case σ2 = 1) to find, with
tedious but standard calculations,

V ([α̂GLS , β̂GLS ]T |X) = (XTΩ−1X)−1 = [...] =

[
2.5 −1
−1 0.5

]
.

Hence, Cov(α̂GLS , β̂GLS |X) = −1 and V ar(β̂GLS |X) = 0.5.
Set also

Y =

4
3
7

 .
Using the formula for the GLS estimator (p. 89 in Tyrcha et al.) and using
standard calculations we find[

α̂GLS

β̂GLS

]
= (XTΩ−1X)−1XTΩ−1Y = [...] =

[
10.5
−2.5.

]

Problem 2

The OLS estimator can in this case be derived (similarly to how it is done in
Tyrcha et al ch. 2) as

β̂ =

∑
XiYi∑
X2

i

,

so that with X = (X1, ..., Xn)T and Y = (Y1, ..., Yn)T it holds that

β̂ = (XTX)−1XTY.
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Hence, if we also set ε = (ε1, ..., εn), then Y = Xβ + ε and

E(β̂) = E((XTX)−1XTY )

= E((XTX)−1XT (Xβ + ε))

= β,

and β̂ is unbiased.
To show that β̂ is BLUE means showing that any other linear unbiased

estimator has a larger variance. Let γ̂ be a linear estimator, meaning that for
some column vector C (dimension n), it holds that γ̂ = CTY . Suppose moreover
that γ̂ is unbiased so that E(γ̂) = E(CTY ) = E(CT (Xβ + ε)) = CTXβ = β,
implying that

CTX =
∑

CiXi = 1. (1)

Also,

V (γ̂) = V (CT (Xβ + ε))

= V (CTXβ + CT ε)

= V
(∑

Ciεi

)
= σ2

∑
C2

i . (2)

Hence, to find the estimator that is BLUE we simply must the solve problem of
minimizing (2) with respect to the variables Ci given the constraint (1). This
is a standard constrained optimization problem that is easily solved using the
Lagrange multiplier method, which yields Ci = Xi/

∑
X2

i ; which is directly

seen to be equivalent to β̂ as defined above. In other words, β̂ is indeed BLUE.

Problem 3

We have the classical model under heteroskedasticity and the GLS estimator is
BLUE (Tyrcha et al p. 90). The data corresponds to Ω = diag(a21, ..., a

2
100),

X =

1 X1,2 X2,1

...
...

...
1 X1,100 X2,100

 ,Y =

 Y1
...

Y100


Using the same formula as in Problem 1 we can, using the data as described
above, calculate

β̂GLS = (XTΩ−1X)−1XTΩ−1Y .

Using that n = 100 and k = 3, we have now have all ingredients for the formula
for σ̂2 in Tyrcha et al. p. 91.

We will use an F -test to test the hypothesis against H1 : any βi 6= 0, i = 1, 2
(cf. Tyrcha et al. ch 3.3), which corresponds to q = 2,

R =

[
0 1 0
0 0 1

]
, r =

[
0
0

]
.
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We thus have all ingredients for the formula for F (Tyrcha et al. p. 91) which
is distributed according to F (q, n− k) under H0. Using our data, as described
above, and the formulas above we may (using the formula for F ) calculate Fobs.
A table gives F0.01(2, 97) = 4.8309. If Fobs > 4.8309 we reject H0 in favor of
H1.

Problem 4

Repeated substitution gives

rt = 0.3rt−1 + at

= 0.32rt−2 + 0.3at−1 + at

= 0.33rt−3 + 0.32at−2 + 0.3at−1 + at

= ...

= at + 0.3at−1 + 0.32at−2 + ...

Hence, E(rt) = 0,

V (rt) = V (at + 0.3at−1 + 0.32at−2 + ...)

=

∞∑
i=0

(0.32)i

=
1

1− 0.32
,

and (using e.g. E(rt) = 0 and the independence of at+1 and rt)

C(rt, rt+1) = E(rtrt+1)

= E(rt(0.3rt + at+1))

= 0.3E(r2t )

= 0.3V (rt)

=
0.3

1− 0.32

while similar calculations yield C(rt, rt+L) = 0.3L

1−0.32 for L > 1. Since the expec-
tation, variance and covariances are independent of t, the time series is weakly
stationary.

Problem 5

Define

It−1 =

{
0.4 if rt−1 ≥ 1,

0.2 if rt−1 < 1,

so that the model can be written as rt = It−1rt−1 + at.
Note that I1 = 0.4 so that r2 = I1r1 + a2 = 0.4 + a2. Hence, the 1 step

ahead forecast is

r̂1(1) = E[r2|F1] = 0.4.
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Note that

r̂1(2) = E[r3|F1]

= E[I2r2 + a3|F1]

= E[I2(0.4 + a2)|F1]

= 0.4E[I2] + E[I2a2|F1].

Note that I2 = 0.4 if a2 = 1 and I2 = 0.2 if a2 = −1. Hence, E[I2] =
1
2 ∗ 0.4 + 1

2 ∗ 0.2 = 0.3. Note that I2a2 = 0.4 if a2 = 1 and I2a2 = −0.2 if
a2 = −1. Hence, E[I2a2] = 1

2 ∗ 0.4 ∗ 1 + 1
2 ∗ 0.2 ∗ −1 = 0.1. It follows that

r̂1(2) = 0.4 ∗ 0.3 + 0.1 = 0.22.

Problem 6

The absolute value of the coefficient in front of xt−1 is smaller than 1. Hence,
{xt} is a weakly stationary (ARMA) time series (compare p. 36-37 in Tsay).
Hence,

E(xt) = E(0.3xt−1 + at + 0.5at−1)

= E(0.3xt−1)

= 0.3E(xt)

so that E(xt) = 0.
Set b = 0.3 and d = 0.5 and let B denote the backshift operator. Then, the

time series can be expressed as

(1− bB)xt = (1 + dB)at. (3)

To express {xt} as an MA process means that we want to write it on the form

xt =

∞∑
j=0

ψjB
jat (4)

(and our mission is therefore to find constants ψ0, ψ1, ψ2, . . . such that (4) holds).
This means that

(1− bB)xt = (1− bB)

∞∑
j=0

ψjB
jat. (5)

From (3) and (5) we obtain

1 + dB =(1− bB)

∞∑
j=0

ψjB
j

=(1− bB)(ψ0 + ψ1B + ψ2B
2 + . . .)

=ψ0 + (ψ1 − bψ0)B + (ψ2 − bψ1)B2 + (ψ3 − bψ2)B3...,
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which directly implies

1 = ψ0

d = ψ1 − bψ0

0 = ψj − bψj−1 for j ≥ 2,

i.e.

ψ0 = 1

ψ1 = d+ b

ψj = bψj−1 = bj−1(d+ b) for j ≥ 2.

Plugging in the numbers (i.e. using d+ b = 0.8) and simplifying a bit yields

ψ0 = 1

ψj = 0.3j−10.8 for j ≥ 1.

Using this in (4) yields

xt = at + 0.8

∞∑
j=1

0.3j−1Bjat

and we have thus rewritten {xt} as an MA process (of infinite order).
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