MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonas Bergström

Tentamensskrivning i
Mathematics of Cryptography, 7,5 hp
18 March 2019
9.00-14.00

There are ten problems, each giving between 0 and 8 points. The points from the exam is added to points from the homework assignments. Grades are then given by the following intervals:
A 100-92p, B 91-84p, C 83-76p, D 75-68p, E 67-60p.

Remember to motivate your answers carefully. No calculators or computers may be used.

1. a) Explain what a public key cryptosystem is. In particular, explain what a one-way-function with a trapdoor is, and its function in a public key cryptosystem.
b) Describe the problem one needs to solve to decrypt a ciphertext of the cryptosystem RSA (without knowing the private key). What is the underlying hard mathematical problem for RSA?
c) Explain in some detail which basic properties one wants from a public key cryptosystem?
2. a) Let a, b, m be positive integers. Give a criterion in terms of a, b, m for there to be a solution to the equation

$$
a x \equiv b \quad \bmod m .
$$

b) Take a, b, m so that there is at least one solution to the equation,

$$
a x \equiv b \quad \bmod m
$$

Give an expression (in terms of a, b, m) for how many solutions there are modulo m.
c) Use the Chinese reminder theorem to solve the following system of equations:

$$
\begin{cases}7 x \equiv 3 & \bmod 10 \\ 7 x \equiv 8 & \bmod 27\end{cases}
$$

3. a) Let G be a finite group and g an element of G. Prove how many multiplications that are needed, using fast powering, to compute g^{N} in terms of the positive integer N. Is the growth polynomial/subexponential/exponential with the input?
b) Say that $p=23, q=56499605716734596849, n=p q$ and that a is a primitive root both modulo p and modulo q. Roughly how many steps would it take for Pollard's $p-1$-algorithm, using the integer a as a base, to give the factorization of n ?
4. a) State the ElGamal problem and state the Diffie-Hellman problem.
b) Is the ElGamal problem easier to solve than the Diffie-Hellman problem? Is it harder? (No proof is necessary.)
c) What are the algorithms involved in encryption and decryption in the ElGamal cryptosystem? What are their complexity? Are they polynomial/subexponential/exponential?
d) What is the fastest algorithm (that we know) that breaks the ElGamal cryptosystem? What is its complexity? Is it polynomial/subexponential/exponential?
5. a) Explain what a digital signature scheme is.
b) What is the problem that digital signatures are supposed to solve?
c) Explain the man-in-the-middle attack against a public key cryptosystem (of your choice).
d) Does a digital signature protect against a man-in-the-middle attack?
6. a) Describe the Fermat primality test (that is, a primality test based upon Fermat's little theorem).
b) What are the benefits of using the Miller-Rabin primality test compared to the Fermat primality test?
c) What are the benefits of using the Fermat primality test compared to the Miller-Rabin primality test?
d) What is the complexity of the Miller-Rabin primality test if one want to use it to get a primality proof? Is is polynomial/subexponential/exponential?
e) Name an algorithm that gives a primality proof that has substantially better complexity than the Miller-Rabin primality test when used to give a primality proof.
7. a) What is a B-smooth number?
b) Let p, q be prime numbers, $n=p q, a=\lfloor\sqrt{n}\rfloor+1$, and $F(T)=T^{2}-n$. Say that we have computed the list of integers $F(a), F(a+1), \ldots, F(a+b)$ for some positive integer b. Describe how the quadratic sieve gives all B-smooth numbers in this list (for any choice of positive integer B).
c) Give an approximate expression for the number of divisions of integers one needs to do in the process described in b).
d) Let n be of size 2^{k}. Give an expression for B that grows subexponentially with k, such that the expected number of checks of random integers of size roughly \sqrt{n} one needs to do in order to find $\pi(B)$ integers that are B-smooth also grows subexponentially. What is this expected number?
8. a) Consider the elliptic curve over \mathbb{F}_{5} given by,

$$
E: y^{2}=x^{3}+4 x+4 .
$$

List the points of $E\left(\mathbb{F}_{5}\right)$.
b) Lenstra's factorization algorithm is subexponential. Explain in some detail how this fact depends upon the distribution of B-smooth numbers.
9. Use index calculus to solve the DLP: $g^{x} \equiv_{p} h$ with $g=103, h=386$ and $p=1019$. The fact that $h g^{183}=126$ and the following table will be helpful:

$$
\left(\begin{array}{cc}
i & g^{i}(\bmod p) \\
946 & 2 \cdot 3 \cdot 5 \cdot 7 \\
735 & 2 \cdot 3^{2} \cdot 5 \\
347 & 2^{3} \cdot 3 \\
245 & 3 \cdot 7 \\
454 & 2 \cdot 3^{2} \cdot 5 \cdot 7
\end{array}\right)
$$

10. a) What the expected number of steps for the Pollard- ρ method to find the solution to a DLP in \mathbb{F}_{p}^{*} ? Is this algorithm polynomial/subexponential/exponential?
b) What is the main advantage of the Pollard- ρ method over Shank's Babystep-Giantstep method to solve a DLP?
c) The table

$$
\left(\begin{array}{cccc}
i & x_{i} & y_{i} & f\left(y_{i}\right) \\
0 & 1 & 1 & 11 \\
1 & 11 & 6 & 20 \\
2 & 6 & 14 & 12 \\
3 & 20 & 6 & 20 \\
4 & 14 & 14 &
\end{array}\right)
$$

describes an application of the function

$$
f(x)= \begin{cases}g x(\bmod p) & \text { if } 0 \leq x<8 \\ x^{2}(\bmod p) & \text { if } 8 \leq x<16 \\ h x(\bmod p) & \text { if } 16 \leq x<23\end{cases}
$$

where $p=23, g=11, h=3, x_{i+1}=f\left(x_{i}\right)$ and $y_{i+1}=f\left(f\left(y_{i}\right)\right)$. Use this data to solve the DLP: $g^{x} \equiv{ }_{p} h$.

The exam will be returned 11.00 on Friday the 5th of April in room 410 in house 6 . After that it can be collected in room 204 in house 6 .

