MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonas Bergström

Tentamensskrivning i
Mathematics of Cryptography, 7,5 hp
24 April 2019
9.00-14.00

There are ten problems, each giving between 0 and 8 points. The points from the exam is added to points from the homework assignments. Grades are then given by the following intervals:
A 100-92p, B 91-84p, C 83-76p, D 75-68p, E 67-60p.

All answers must be motivated carefully! No calculators or computers may be used.

1. a) Explain how a public key cryptosystem and a private key cryptosystems works.
b) What are the main advantages and disadvantages of using public key cryptosystems compared to private key cryptosystems.
c) Give an example of how public key methods can be used together with a private key cryptosystem.
2. a) Give an example of a cryptosystem for which the underlying mathematical problem is assumed to be a DLP.
b) Explain why it is a bad idea to base a cryptosystem on the DLP in the group $(\mathbb{Z} / n \mathbb{Z},+)$.
c) What is the main advantage of the DLP for elliptic curves compared to the DLP for \mathbb{F}_{p}^{*} ?
d) Explain a way to find a prime number p with 2040 bits, and give an expression for how many checks one is likely to have to do.
3. a) Let p be prime number and e be an integer. Give an expression (in terms of p, e) for how many solutions (modulo p) there are to the equation

$$
x^{e} \equiv_{p} 1,
$$

and prove that it holds.
b) The element $g=7$ has order 23 in \mathbb{F}_{47}^{*}. Find all solutions (modulo 47) to the equation

$$
7^{3 x} \equiv_{47} 7 .
$$

c) Use the Chinese reminder theorem to solve the following system of equations:

$$
\left\{\begin{array}{l}
3 x \equiv 2 \quad \bmod 10 \\
11 x \equiv 8
\end{array} \bmod 27\right.
$$

4. a) Explain Shank's Babystep-Giantstep algorithm to solve DLPs in a finite group G.
b) Prove that this algorithm always gives a solution.
c) What is the complexity of Shank's Babystep-Giantstep algorithm and what is the complexity
of the naive method to solve a DLP? Are they polynomial/subexponential/exponential? (No
c) What is the complexity of Shank's Babystep-Giantstep algorithm and what is the complexity
of the naive method to solve a DLP? Are they polynomial/subexponential/exponential? (No proofs are required.)
d) What is the memory usage of Shank's Babystep-Giantstep algorithm and what is the memory usage of the naive method to solve the DLP?
5. a) Prove that the number of steps it takes, using the Euclidian algorithm, to find the greatest common divisor of two positive integers $a \geq b$ is at most $2 \log _{2}(b)+2$.
b) Roughly how many steps does one need to solve the DLP $g^{x}=h$ in a finite group G using the naive method together with Pohlig-Hellman if g has order $5^{100} \cdot 7^{200}$?
6. a) Explain how the RSA cryptosystem works.
b) Are there any type of integers $N=p q$ that should be avoided when setting up this cryptosystem?
c) Explain how the RSA digital signature scheme works.
d) Explain which purposes a hash function has when used in a digital signature scheme?
7. a) What is the difference between probabilistic encryption and deterministic encryption?
b) Give an example of a cryptosystem with probabilistic encryption and one with deterministic encryption.
c) Describe what kind of security problems there are with deterministic encryption.
d) Describe what padding is and how it can turn a deterministic encryption into a probabilistic one.
8. a) Describe the index calculus algorithm to solve the DLP in \mathbb{F}_{p}^{*}.
b) Give an expression for the complexity of the index calculus algorithm in terms of the prime p ? Is it polynomial/subexponential/exponential?
c) Explain how this complexity depends upon the distribution of smooth numbers (i.e. "how many" smooth numbers there are).
9. a) Consider the elliptic curve over \mathbb{F}_{7} given by,

$$
E: y^{2}=x^{3}+3 x \text {. }
$$

List the points of $E\left(\mathbb{F}_{7}\right)$.
b) The SEA-algorithm computes the number of points on an elliptic curve in polynomial time. Explain the importance of this algorithm for some cryptographical application.
c) Explain in some detail what the main advantage of Lenstra's factorization algorithm is compared to Pollard's $p-1$-algorithm.
10. a) Let $N=44377, F(T)=T^{2}-N$ and $a=\lfloor\sqrt{N}\rfloor+1=210$. Characterize which of the numbers:

$$
F(a), F(a+1), F(a+2), \ldots, F(a+100)
$$

that are divisible by 5 and which that are divisible by 11 .
b) Now put $N=3219577, F(T)=T^{2}-N$ and $a=\lfloor\sqrt{N}\rfloor+1=1794$. After computing $F(a+i)$ for i from 0 to 350 we find the following five 13 -smooth numbers:

$$
\begin{align*}
(a+7)^{2}-N & =2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \tag{1}\\
(a+19)^{2}-N & =2^{6} \cdot 3^{4} \cdot 13 \tag{2}\\
(a+59)^{2}-N & =2^{4} \cdot 3 \cdot 7^{3} \cdot 13 \tag{3}\\
(a+73)^{2}-N & =2^{7} \cdot 3^{3} \cdot 7 \cdot 11 \tag{4}\\
(a+227)^{2}-N & =2^{5} \cdot 3^{3} \cdot 7 \cdot 11 \cdot 13 \tag{5}\\
(a+343)^{2}-N & =2^{3} \cdot 3^{7} \cdot 7 \cdot 11 \tag{6}
\end{align*}
$$

Find all perfect squares one can form out of these numbers.
) Write up all checks for factors of N coming from these perfect squares. You do not need to carry out the computations.

The exam will be returned 11.00 on Friday the 10 th of May in room 410 in house 6 . After that it can be collected in room 204 in house 6 .

