
Department of Mathematics Exam
Stockholm University Mathematics of Cryptography
Section: Mathematics MM7018, 7.5 hp
Examiner: Olof Sisask 2020-03-16 09:00–14:00

There are ten problems, each giving between 0 and 8 points. The points from the exam are added to
your points from the homework assignments. Grades are then given by the following intervals:

A: 100–92p, B: 91–84p, C: 83–76p, D: 75–68p, E: 67–60p.

Remember to motivate your answers carefully. You may use Big-O notation unless explicit constants
are asked for. No calculators or computers may be used.

Try to keep your answers concise; no question is asking for an essay.

1. (a) (2p) Describe the basic framework for a private key (symmetric) cryptosystem.

(b) (2p) Describe the basic framework for a public key cryptosystem. Mention, in particular,
what a one-way function with trapdoor information is, and its role in the system.

(c) (1p) State some of the main advantages of public key cryptosystems relative to private key
cryptosystems, and vice versa. (Short explanations suffice.)

(d) (3p) Explain the essential properties that a practical cryptosystem must have when it comes
to speed of computation. What does it mean for a system to be secure against a known
plaintext attack? What does it mean to be secure against a chosen plaintext attack? (You
may answer in the context of either symmetric or asymmetric cryptosystems.)

Solution (a) A private key cryptosystem consists of

• a set M of allowable plaintexts,
• a set C of ciphertexts,
• a set K of keys and,
• for each key k ∈ K, a pair of functions ek : M → C and dk : C → M such that
dk(ek(m)) = m for all m ∈M .

The functions ek are called encryption functions and the dk are decryption functions.

(b) Similar, except that the set of keys consists of pairs k = (kpriv, kpub) of private and public
keys, and the encryption functions depend only on the public key, so ek = ekpub and the
decryption function depends on the private key.
One should take each ekpub to be a one-way function, that is an invertible function whose
inverse is hard to compute without knowledge of the corresponding kpriv, and for which the
inverse is easy to compute when in possession of kpriv. The private key kpriv is also known
as trapdoor information.

(c) Advantages of public key cryptosystems: the main advantage is that there is no need to
exchange a key beforehand or to exchange any information in secret. It is also easy to
change key often.
The main advantages of private key systems are that they are usually faster, and that both
communicating parties have symmetric encryption and decryption capabilities.

(d) It must be

• fast to encrypt (using the encryption key),
• fast to decrypt if you have the decryption key,
• slow to decrypt, by any means, without knowledge of the decryption key.
• Secure against known plaintext attack: If you know a pair (c,m) consisting of a cip-

hertext and its corresponding plaintext, then it should still be hard to decrypt other
ciphertexts. Similarly if you know some fixed number of such pairs.
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• Secure against chosen plaintext attack: If you are allowed to pick a plaintext m and get
told its corresponding ciphertext c, then it should still be hard to decrypt any ciphertexts
other than c. Similarly if you are allowed to pick a few plaintexts m1,m2, . . .

2. (a) (1p) Show the steps used by the Euclidean algorithm to compute gcd(55, 34).
(b) (2p) Describe the Euclidean algorithm for computing gcd(a, b), where a ≥ b ≥ 1 are integers.
(c) (3p) Prove that the algorithm terminates in at most 2 + 2 log2 b division steps.
(d) (2p) Prove that the algorithm needs at least log2 b division steps for infinitely many integers b.

Hint: let a0 = 1, a1 = 1 and ak+1 = ak + ak−1, for k ≥ 1, be the Fibonacci sequence. Ana-
lyse how the Euclidean algorithm performs when computing gcd(a, b) for a = an+1, b = an.
(You do not need to use the most accurate relationship between n and b to prove the stated
bound; a simple one will do.)

Solution (a) —
(b) One successively performs division with remainder until one hits a remainder of 0, in the

following manner:

a = q1b+ r2

b = q2r2 + r3

r2 = q3r3 + r4

r3 = q4r4 + r5
...

rn−2 = qn−1rn−1 + rn

rn−1 = qnrn + 0,

where rj 6= 0 for all j < n. Then gcd(a, b) = rn.
(c) We claim that the remainders ri decrease by a factor at least 2 every two steps. Let r0 = a

and r1 = b. Claim: for 0 ≤ i ≤ n− 2 we have

ri+2 <
1
2ri.

Proof: the remainders rj are clearly decreasing, ie rj+1 < rj , so if ri+1 ≤ 1
2ri, then ri+2 <

ri+1 ≤ 1
2ri, and we are done. Otherwise, if ri+1 >

1
2ri, then the quotient in the division of

ri by ri+1 must be 1, and so

ri = ri+1 + ri+2 =⇒ ri+2 = ri − ri+1 <
1
2ri.

In either case, the claim is proved.
Thus, provided 2k + 1 ≤ n,

b = r1 > 2r3 > 22r5 > · · · > 2kr2k+1 ≥ 2k.

Taking k = b(n− 1)/2c, we see that

k ≤ log2 b =⇒ n ≤ 2 + 2 log2 b.

(d) Let a0 = 1, a1 = 1 and ak+1 = ak+ak−1, for k ≥ 1, be the Fibonacci sequence. Let a = an+1

and b = an. The output of the algorithm above is then

an+1 = an + an−1

an = an−1 + an−2

an−1 = an−2 + an−3

...
a3 = a2 + a1

a2 = 2a1 + 0.
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It thus takes n steps to complete. Since an ≤ 2n, which is clear since ak+1 = ak+ak−1 ≤ 2ak
and a1 = 1, we have that the algorithm takes

n ≥ log2 an = log2 b steps to complete.

Since there are infinitely many choices of n there are infinitely many different integers b.

3. (a) (2p) Compute 3129 (mod 6480). Give your answer as an integer in {0, 1, 2, . . . , 6479}.
(b) (2p) Compute 5601 (mod 151). Give your answer as an integer in {0, 1, 2, . . . , 150}. If you

use a theorem, make sure you justify why its hypotheses are satisfied.

(c) (2p) Determine all integer solutions to the system of congruences{
4x ≡ 2 (mod 15)

x ≡ 3 (mod 49).

(d) (2p) The element 2 is a primitive root in F×
53. Determine all integer solutions to

4x ≡ 11 (mod 53).

Solution (a) Fast powering: 243

(b) Using Fermat’s Little Theorem: since 151 is prime (not divisible by 2, 3, 5, 7 or 11, and
132 > 151), we know that ak ≡ a (mod 151) if k ≡ 1 (mod 150). Since 601 ≡ 1 (mod 150),
we have

5601 ≡ 5 (mod 151).

(c) The second congruence is equivalent to x = 3+ 49k for k ∈ Z. The first congruence is then
equivalent to

4(3 + 49k) ≡ 2 (mod 15)

⇐⇒ 12 + k ≡ 2 (mod 15)

⇐⇒ k ≡ 5 (mod 15).

Thus the congruences are equivalent to x = 3 + 49(5 + 15m) for m ∈ Z, or

x = 248 + 15 · 49m for m ∈ Z,

or
x ≡ 248 (mod 15 · 49).

(d) Since 2 is a primitive root, ord(2) = 52, and so ord(4) = ord(22) = 52/2 = 26. One solution
to the congruence is x = 3, since 43 = 64 ≡ 11 (mod 53), and so all solutions are described
by

x ≡ 3 (mod 26).

4. Let G be a finite group, and let g ∈ G.

(a) (1p) Describe what is meant by a Discrete Logarithm Problem (DLP) to base g in G.

(b) (3p) Describe Shanks’s Babystep–Giantstep Algorithm for solving a DLP in G. (You do not
need to prove that the algorithm works.)

(c) (1p) In how many steps does this algorithm guarantee to solve the DLP? How much storage
does it need in general? Relate your answers to part (b).

(d) (1p) What is the main advantage of Pollard’s ρ method over Shanks’s method for solving
the DLP in F×

p ? Is there a disadvantage?
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(e) (2p) If the group is (Z/NZ,+) (that is, with addition as the group operation) and g is
relatively prime to N , explain how the DLP to base g can be solved very quickly.

Solution (a) A DLP to base g in G is a problem of the form: given h ∈ G, find an integer x such that

gx = h,

if it exists.

(b) Suppose g has order N and that we wish to solve gx = h. Let n = b
√
Nc+ 1. Compute the

two lists

List 1: 1, g, g2, g3, . . . , gn

List 2: h, hg−n, hg−2n, hg−3n, . . . , hg−n2
,

each of length O(
√
N). If the DLP has a solution, then by construction there is guaranteed

to be an element that is in both lists. Find such a collision, say

gj = hg−kn, and note that gj+kn = h,

and so x = j + kn is a solution to the DLP.

(c) It needs O(
√
N logN) steps; O(

√
N) to compute the two lists above, and the log-factor

comes from sorting and searching. It requires O(
√
N) storage, to form the two lists.

(d) For Pollard’s ρ method, the storage requirement is O(1). The main disadvantage is that its
analysis relies on probabilisic reasoning with a function that is not known to be sufficiently
‘mixing’. The expected running time is otherwise O(

√
N).

(e) If the group is (Z/NZ,+), the DLP gx = h becomes, in additive notation,

gx ≡ h (mod N).

If g is relatively prime to N , we can find its multiplicative inverse g−1 quickly by the
Extended Euclidean algorithm, and then simply compute

x ≡ g−1h (mod N).

The running time is then O(logN).

5. (a) (2p) Describe a practical use for digital signature schemes.

(b) (4p) Describe all the steps in any one specific digital signature scheme from the course.

(c) (2p) Describe what hashing is, and its role in digital signature creation.

Solution (a) For example in verifying that software updates downloaded to one’s computer are actually
from the original software authors. They can be used in any situation in which one needs
to know that a presented document is approved of by a particular party.

(b) —

(c) Often the signatures produced are of the same size (at least) as the document needing to
be signed. For large documents, this is impractical. Instead, one often computes a hash of
the document, meaning feeding the document to a specific hashing function that outputs a
short integer h (say 256 bits) for which it is computationally infeasible to come up with any
other documents that map to the same hash h. One then signs this hash h instead. Since it
is hard to come up with any other documents that map to the same hash, it is hard for any
attackers to claim that any other documents have been signed with the given signature.
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6. (a) (2p) State the Pohlig–Hellman theorem on the number of steps needed to solve a DLP to
a base g, when the order N of g is known to factor as N = qe11 q

e2
2 · · · q

et
t , where the qi are

distinct primes. (Make sure you state in which setting the theorem applies.)

(b) (2p) Suppose you wish to pick a prime p and a primitive root in F×
p for use as a base for

a DLP. What implications does the Pohlig–Hellman theorem have for your choices if you
want the DLP to be secure?

(c) (4p) Let G be a group, and q a prime. Suppose you have an algorithm that can solve the
DLP in G to any base of order q in Sq steps. Let g ∈ G be an element of order q2. Prove
that you can solve any DLP in G to base g in O(Sq) steps.

Solution (a) —

(b) One should pick p so that p− 1 has at least one large prime factor. If p− 1 only has small
prime factors, then the Pohlig–Hellman theorem allows one to solve DLPs quickly in F×

p .

(c) —

7. (a) (3p) Suppose Alice wants to receive secure, encrypted messages from others using the RSA
cryptosystem. Describe what she needs to do to set this up, including how she can decrypt
encrypted messages. Explain why the decryption process works. (You may assume theorems
from modular arithmetic.)

(b) (2p) What is the mathematical problem underpinning the security of RSA, according to the
best approaches known? Specify the running time for one of the two best methods known
for solving this problem. Classify whether it is exponential, subexponential or polynomial.

(c) (3p) Describe the Miller–Rabin test and how it can be used to help generate some of the
public parameters involved in RSA. If your description involves randomisation, justify why
the probability of success is high.

Solution (a) —

(b) One needs to be able to compute eth roots modulo a product n = pq of two primes. The
best approaches to this rely on factoring n. We studied the quadratic sieve for factoring n;
this has expected running time about

O
(
e
√

(logn)(log logn)
)
,

which means that it is subexponential.

(c) Bookwork for the test description.
One can use this test in generating the large primes needed for RSA, simply by picking large
integers at random and testing whether they are primes until one has found two (likely)
primes. By the prime number theorem, one is likely to succeed after not too many attempts,
for the current sizes of primes needed for RSA, since roughly a proportion 1/ logN of the
integers below N are prime.
The Miller–Rabin test itself is also likely to successfully identify primes, relying on the
fact that at least 75% of numbers less than an odd composite number n are Miller–Rabin
witnesses for the compositeness of n.

8. (a) (7p) Let p = 503 (a prime), g = 53 and h = 204. The element g is a primitive root modulo p.
Solve gx ≡ h (mod p) using index calculus.

The fact that hg−88 ≡ 60 (mod p) and the following table might be helpful.
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i gi (mod p)

457 34 · 5
434 33 · 7
136 32 · 7
12 2 · 33

(b) (1p) Say briefly how a table such as the above might be found in practice, and in particular
why one is likely to have success in doing so.

Solution (a) Since hg−88 ≡ 60 ≡ 22 · 3 · 5 (mod p), we have that

logg(h) ≡ 88 + 2 logg(2) + logg(3) + logg(5) (mod (p− 1)).

We shall use the information in the table to compute these discrete logarithms. All congru-
ences below are mod p− 1 = 502. First, the table gives

457 ≡ 4 logg(3) + logg(5)

434 ≡ 3 logg(3) + logg(7)

136 ≡ 2 logg(3) + logg(7)

12 ≡ logg(2) + 3 logg(3).

Subtracting the third congruence from the first, we find

logg(3) = 434− 136 ≡ 298.

Solving for logg(2) and logg(5), we then obtain

logg(2) ≡ 122 and logg(5) ≡ 269.

Thus, returning to the top computation,

logg(h) ≡ 88 + 2 · 122 + 298 + 269 ≡ 397.

The (unique) solution (mod 502) is then x = 397.
(b) One can generate such a table by picking the exponent i at random mod (p−1) and testing

whether gi is B-smooth for some small parameter B. Since there are quite a lot of smooth
numbers, one is likely to hit these relatively often.

9. (a) (2p) Name two different ways in which elliptic curves are relevant to modern cryptography.
(b) (1p) Consider the elliptic curve over Fp (p ≥ 5) given by

E : y2 = x3 + 3.

What does the Hasse bound say about the number of points of E(Fp)?
(c) (2p) With E as above, how many points does E(F7) have? How does this compare to the

bound from the previous part?
(d) (3p) Describe how elliptic curve Diffie–Hellman key exchange works. Explain why it is not

truly necessary for Alice and Bob to transmit the full pair (x, y) defining a point at each
step, and why not doing so could be advantageous. (You may assume that we are working
over a prime field Fp with p ≡ 3 (mod 4).)

Solution (a) One way is for constructing seemingly secure cryptosystems, for example based on the DLP
over an elliptic curve over Fp, for which no algorithms performing better than O(

√
p) are

known. Another is in factorisation: one can use Lenstra’s elliptic curve factorisation method
to factor fairly large integers.
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(b) The discriminant is non-zero, and so the Hasse bound says that the number of points of
E(Fp) is p+ 1 + tp where |tp| ≤ 2

√
p.

(c) We draw up a table, using the fact that y2 = (7− y)2, meaning that the squares in F7 are
0, 1, 4, 2, and that (7− x)3 = −x3:

x x3 x3 + 3 y

0 0 3 −
1 1 4 ±2
2 1 4 ±2
3 −1 2 ±3
4 1 4 ±2
5 −1 2 ±3
6 −1 2 ±3

Taking into account the point at infinity O, there are thus 1 + 2 · 6 = 13 points in E(F7).
The previous bound implies that

|E(F7)| ≤ 8 + 2
√
7 < 14,

and is thus sharp for this curve.

(d) Bookwork for the first part.
It is not truly necessary for Alice and Bob to transmit the full pair (x, y) at each step, since
y can be found fairly quickly from x using the curve’s definition, at least up to a sign. One
could thus transmit only x and one extra bit to indicate the sign of y, thus reducing the
amount of data needing to be transmitted (roughly cutting it in half on average). (Note: it
is quick to compute square roots mod p if p ≡ 3 (mod 4), by fast powering.)

10. (a) (2p) Describe briefly the relationship between Pollard’s p− 1 method and Lenstra’s elliptic
curve factorisation method. (You do not have to describe in detail how either one works.)

(b) (2p) What is the expected running time of Lenstra’s elliptic curve factorisation method in
factorising N , if N = pq is a product of two primes and p < q? Under what circumstances
might this offer an advantage over the other factorisation methods of the course?

(c) (4p) This question is about finding a factor of the number N = 2021 = 43·47 using Lenstra’s
method. Consider the equation

E : y2 = x3 + 3x− 3

defining an elliptic curve over various fields. The curve contains the point P = (1, 1) over
any field, and over Z/NZ. It turns out that

11P = O over F43,

37P = O over F47,

and that 11 and 37 are the smallest such numbers.
Describe how Lenstra’s algorithm will run, motivating why it will find a non-trivial factor
of N and stating after how many steps.

Solution (a) These algorithms work in the same way, except that Pollard’s algorithm works in the setting
of multiplication over F×

p whereas Lenstra’s elliptic curve factorisation method works with
addition on an elliptic curve over Z/NZ.

(b) Its average running time is approximately O
(
e
√

2(log p)(log log p)
)
. This would be better than,

say, the quadratic sieve method for factoring if N has a relatively small prime factor.
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(c) The algorithm will start with P and successively compute, over Z/NZ, the points

2!P = 2P, 3!P = 3(2P ), 4!P = 4(3!P ), . . .

until it reaches 11!P (after 10–11 steps), where it will have tried to invert a number d that
is not invertible in Z/NZ. Since 11P = O over F43, this number will contain a factor 43, but
since 11P 6= O over F47, it will not contain a factor 47. Thus, by computing gcd(d,N) = 43
using the Extended Euclidean algorithm, we will have found the factor 43 of N .
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