
Department of Mathematics Exam
Stockholm University Mathematics of Cryptography
Section: Mathematics MM7018, 7.5 hp
Examiner: Olof Sisask 2020-04-15 09:30–13:30

There are six problems on this written exam, each worth up to 8 points. These points will be assigned
in conjunction with the accompanying oral exam, which will also feature additional problems for
discussion. Altogether, these exams carry up to 80 points, which will be added to your points from the
homework assignments. Grades are then given by the following preliminary intervals:

A: 100–92p, B: 91–84p, C: 83–76p, D: 75–68p, E: 67–60p.

Remember to motivate your answers carefully.

Instructions – read carefully

a) This exam is only valid taken in conjunction with an oral exam 2020-04-16, in accordance with
the instructions emailed out to exam participants.

b) Allowed resources: You may use the course book and your course notes, and you are expected to
use a calculator (in a limited way) in answering the questions. The calculator may be used to do:

• addition, subtraction, multiplication and division of two numbers,

• calculation of a residue modulo an integer, and

• where explicitly stated in the question, calculation of a power ab (potentially mod n).

Using computer software for the above purposes is allowed, but only for the above operations.

c) You need to include all the steps and write motivation in your solutions, or you will not receive
points for them. Wherever you have used a calculator to do a computation, you need to indicate
this specifically, say by writing for example “CALC(×2)” or “CALC(+)” above an equals sign.

d) You may not have any communication with anyone else during the exam, whether verbal or
written, sending or receiving, except for the examiner.

e) On the first page of your answer submission, write the total number of submitted pages and the
following declaration, appropriately filled in, and sign your agreement to it:

I, name , declare that that the answers submitted in my name are written by me, and were
arrived at without input from anyone else, using only the allowed resources.

Signature , person number

f) You must submit your solutions as a single PDF on the course web page, by 14:15 at the latest.
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Questions

1. In this question you may not use the calculator to compute powers ab, except when b = 2.

(a) (2p) Compute 93840 (mod 211). Give your answer as an integer in {0, 1, 2, . . . , 210}. If you
appeal to a theorem, make sure you fully justify why its hypotheses are satisfied.

(b) (2p) Compute 51029 (mod 3000). Give your answer as an integer in {0, 1, 2, . . . , 2999}. If
you appeal to a theorem, make sure you fully justify why its hypotheses are satisfied.

(c) (2p) The element 3 is a primitive root in F∗127. Determine all integer solutions to

27x ≡ 94 (mod 127).

(d) (2p) Consider the elliptic curve

E : y2 = x3 + 3 over F11.

The point P = (1, 2) lies on the curve. Compute P + P (on E), showing all your steps.

Solution: (a) Ans: 1. Must check that 211 is a prime.

(b) Ans: 125. Note: 53 = 625, and 6252 ≡ 625 (mod 3000). Also 1029 = 1024 + 4 + 1.

(c) Ans:
x = 2 + 42k, k ∈ Z.

Note: 272 ≡ 94 (mod 127)

(d) Ans: On this curve, if Q = (x, y) then Q+Q can be calculated by letting

λ =
3x2

2y

and Q+Q = (x′, y′), where

x′ = λ2 − 2x and y′ = λ(x− x′)− y.

For us,

λ =
3

4
= 3 · 3 = 9,

and so
P + P = (2,−9− 2) = (2, 0).

2. In this question you may not use the calculator to compute powers ab, except when b = 2.

(a) (2) What is the order of the element 2 in the group F∗29? (Motivate!)

(b) (4) Use Shanks’s Babystep–Giantstep algorithm to solve the discrete logarithm problem

2x = 13

in the group F∗29, making all parameter choices and steps clear.

(c) (1) In the group (Z/1013Z,+), what is the order of the element 2? (Note that the group
operation is addition.)

(d) (1) In the same group (Z/1013Z,+), compute log2(57) and log2(114). (Note that the group
operation is addition.)

Solution: (a) Ans: 28. Since 28 = 4 · 7, it suffices to check that 214 6= 1, and 24 6= 1.
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(b) The order of 2 is N = 28, so we let n = 1+b
√
Nc = 6, and compute two lists: 1, g, g2, . . . , gn

and h, hg−n, hg−2n, . . . , hg−n2 , yielding

1, 2, 4, 8, 16, 3, 6

and
13, 7, 6, . . .

Having found this collision, we can stop, knowing that

gn = 6 = hg−2n,

whence
h = g18.

(c) Since gcd(1013, 2) = 1, the element 2 has order 1013: if 2x ≡ 0 (mod 1013), then x ≡ 0
(mod 1013).

(d) log2(57) is given by the solution to

2x ≡ 57 (mod 1013).

Since 2−1 ≡ (1013 + 1)/2 ≡ 507 (mod 1013), this gives

log2(57) = x ≡ 57 · 507 ≡ 535.

Furthermore,
log2(114) = 2 log2(57) = 57.

(Alternatively, just note that 2 · 57 = 114.)

3. In this question you may use the calculator to compute powers ab.

Let p = 83 (a prime). The element g = 2 is a primitive root in F∗p. This question is about the
ElGamal digital signature scheme in this group.

(a) (2p) Let a = d + 3, where d is the last digit of your person number. Create a public
verification key based on secret signing key a, and create a signature for the document 10.
(‘Random’ choices may be determined however you please.)

(b) (3p) Samantha has ElGamal public verification key 11. Cliff claims that Samantha has
signed the documents D = 10 and D′ = 20, with corresponding signatures

(S1, S2) = (5, 2) and (S′1, S
′
2) = (5, 4).

Determine which of the documents Samantha actually signed (if any).

(c) (3p) One should not reuse the same random element in ElGamal digital signature creation
for different documents. Explain how one can see that this advice was not followed in the
following scenario, and exploit this to find the secret signing key: the two documents D = 7
and D′ = 34 were signed with the same secret signing key and produced the corresponding
signatures

(S1, S2) = (5, 11) and (S′1, S
′
2) = (5, 12).

Solution: (a) The public verification key is given by A = ga mod p, which depends on d as follows:

d 0 1 2 3 4 5 6 7 8 9
A 8 16 32 64 45 7 14 28 56 29
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For the signature, one needs to pick an integer k with 1 < k < p such that gcd(k, p−1) = 1,
and compute

S1 = gk mod p

S2 = (D − aS1)k−1 mod (p− 1).

It is important here that k−1 is computed mod (p− 1), not p.
To verify that these have been computed correctly, we can check AS1SS2

1 ≡ gD (mod p),
where gD = 210 ≡ 28 (mod p).

(b) We need to compute AS1SS2
1 mod p for each of the signatures, and compare this to gD mod p

for the corresponding document.
We have

AS1 = 115 ≡ 31 (mod p).

We also have
SS2
1 = 52 = 25,

and so for the first signature we have

AS1SS2
1 ≡ 31 · 25 ≡ 28 (mod p).

We compare this to
gD = 210 ≡ 28 (mod p).

Since these are equal mod p, we have verified that the signature for D is correct.

For the second document, we have the same value of AS′
1 , but now

S
′S′

2
1 = 54 ≡ 44 (mod p),

and so
AS′

1S
′S′

2
1 ≡ 31 · 44 ≡ 36 (mod p).

For the document we have
gD

′
= 220 ≡ 37 (mod p).

Since these are different, Samantha’s key did not produce this signature for D′.

(c) Let a be the secret signing key we are after. Since S1 = S′1 and g is a primitive root, the
same random element k was used to create both signatures. From the definition of S2 and
S′2, this means that

11 ≡ (7− 5a)k−1 (mod 82)

12 ≡ (34− 5a)k−1 (mod 82).

Multiplying each of these by k (which is invertible) and subtracting the first from the second
yields

k = 27.

Substituting this into the second (multiplied) equation we get

12 · 27 ≡ 34− 5a (mod 82),

which since 12 · 27 = 4 · 81 ≡ −4 (mod 82) is equivalent to

a ≡ 5−1(34 + 4) ≡ 33 · 38 ≡ 24 (mod 82).

The secret key was thus 24.
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4. In this question you may use the calculator to compute powers ab.

(a) (4p) Let p = 577 (a prime). The element g = 25 has order 288 in F∗p. Let h = 251. Use the
Pohlig–Hellman algorithm to solve the DLP

gx = h in F∗p.

(b) (4p) Let p = 251 (a prime) and let q = 5. The element g = 3 has order q3 = 125 in F∗p. Use
the Pohlig–Hellman algorithm to solve the DLP

gx = h in F∗p,

where h = 15.

Solution: (a) Ans: x = 65 Write N = 288 = 2532. Following the Pohlig–Hellman algorithm, set

g1 = gN/25 = g9 = 400

h1 = hN/25 = h9 = 400

and

g2 = gN/32 = g2
5
= 335

h2 = hN/32 = h2
5
= 287.

In the first stage of the algorithm, we need to find solutions y1, y2 to

gy11 = h1, gy22 = h2.

We see immediately that y1 = 1 is a solution to the first equation. For the second one, we
need only consider the possibilities y2 ∈ {0, 1, 2, . . . , 8} as g2 has order 32. We find quickly
that y2 = 2 is a solution.
The second stage of the algorithm says that the solution x to the original DLP can be found
as the solution to the system

x ≡ y1 ≡ 1 (mod 25), x ≡ y2 ≡ 2 (mod 32),

which we can solve by the Chinese Remainder Theorem. The first congruence is equivalent
to x = 1+25k, k ∈ Z, from which the second congruence is equivalent to 25k ≡ 1 (mod 32).
Since 25 ≡ 5 (mod 9), and 5−1 ≡ 2 (mod 9), this is equivalent to k ≡ 2 (mod 32). The full
set of solutions is thus given by, for arbitrary m ∈ Z,

x = 1 + 25(2 + 32m) = 65 + 288m.

Taking m = 0 yields the solution x = 65 to the DLP.

(b) Ans: x = 1 + q + 2q2 = 56. As in the algorithm, we write x = x0 + x1q + x2q
2 with

0 ≤ xi ≤ q − 1 (that is, 0 ≤ xi ≤ 4) and try to determine first x0, then x1 and then finally
x2.
If gx = h, then since g has order q3 we must have

gq
2x0 = gq

2x = hq
2
.

Here
gq = 35 = 243 = −8,

so
gq

2
= (−8)5 = −138 = 113.
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Also
hq

2
= 155

2
= 1005 = 113.

Thus, if there is a solution x, it must have x0 = 1 , which we henceforth set.
It follows that

gx1q+x2q2 = hg−1 = 15 · 84 = 5,

the inverse of 3 modulo 251 being 252/3 = 84. Raising this equation to the power of q, we
see that

gx1q2 = 5q
2
.

We already know that qq2 = 113, and a calculation yields 5q = 113. Hence x1 = 1 as well.
It follows that

gx2q2 = hg−1g−q = 5 · (−8)−1.

Using the Extended Euclidean algorithm we determine 8−1 = −94, and so the above equa-
tion yields

113x2 = 5 · 94 = 219.

Clearly x2 = 0 and x2 = 1 do not work. A quick calculation confirms that 1132 = 219,
however, whence x2 = 2 .
According to the algorithm, the solution to the DLP is given by

x = 1 + q + 2q2 = 56.

5. In this question you may use the calculator to compute powers ab.

(a) (3p) Suppose you know that the integer N has the prime factorisation N = pq. Suppose
p = 28 + 1 and q = 2r + 1 for a prime r with 1000 digits. Name an algorithm from the
course that is likely to be able to find the factorisation of N fairly quickly, and carry out
the algorithm in a ‘baby case’ where r = 29. (Tip: if you need to compute GCDs, you are
allowed to use that you know the factorisation of N in this particular question.)

(b) (5p) Let p = 31, g = 3 (a primitive root in F∗p), and h = 10. This question is about solving
the DLP

gx = h in F∗p
using information obtained from iterates of the map f defined by

f(x) =


gx mod p if 0 ≤ x ≤ 10

x2 mod p if 11 ≤ x ≤ 20

hx mod p if 21 ≤ x ≤ 30.

Let x0 = y0 = 1, and define xi+1 = f(xi) and yi+1 = f(f(yi)). Within a few steps of
computing these, one finds a coincidence xk = yk. Find this coincidence, and use it to solve
the above-mentioned DLP.

Solution: (a) Since p− 1 has only small prime factors (namely 2, to a reasonably small power), Pollard’s
p− 1 method is appropriate.

(b) One gets x4 = y4:

i xi yi f(yi) Computations

0 1 1 3 f(y0) = g
1 3 9 27 x1 = g y1 = f(f(y0)) = g2 f(y1) = g3

2 9 22 3 x2 = g2 y2 = f(f(y1)) = f(g3) = g3h f(y2) = g3h2

3 27 9 27 x3 = g3 y3 = f(f(y2)) = f(g3h2) = g4h2 f(y3) = g5h2

4 22 22 3 x4 = g3h y4 = f(f(y3)) = f(g5h2) = g5h3
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The collision x4 = y4 thus yields

g3h = g5h3

⇐⇒ h2 = g−2.

Since h = gx, this implies that 2x ≡ −2 (mod 30), since g has order 30, which is equivalent
to

x ≡ −1 (mod 15).

Thus the only possibilities for x are 14 and −1. A quick check yields that x is not −1, so
x = 14. (We know a solution exists, since g is a primtive root.)

6. In this question you may use the calculator to compute powers ab.

(a) (1p) Describe a practical cryptographic use for the Miller–Rabin test, other than RSA.

(b) (2p) Let n = 341. Which of the following values of a are Miller–Rabin witnesses for the
compositeness of the integer n? (Motivate clearly!)

a : 2, 3, 4.

(c) (5p) Let n be a product of two primes, and assume that n = 4k + 1 where k is an odd
integer. Suppose that the integer a is not a Fermat-witness for the compositeness of n. This
means that

an−1 ≡ 1 (mod n).

Suppose further that a is a Miller–Rabin witness for the compositeness of n. Show how
one can use this witness a to efficiently find the prime factorisation of n. Demonstrate your
method by applying it to factorise n from part (a). (Hint: factorise an−1 − 1.)

Solution: (a) For example in finding the large primes that are needed for the ElGamal cryptosystem or
digital signature scheme.

(b) We have that n− 1 = 340 = 2 · 170 = 22 · 85. Let us write k = 85. By definition, a number
a with gcd(a, n) = 1 is then a Miller–Rabin witness for n if all the following conditions are
satisfied:

i. ak 6≡ ±1 (mod n)

ii. a2k 6≡ −1 (mod n).

In our cases we have
a ak mod n a2k mod n

2 32 1
3 254 67
4 1 ∗

Thus a = 2 and a = 3 are Miller–Rabin witnesses for n, and a = 4 is not.

(c) Since n = 4k+1, the definition of a being a Miller–Rabin witness for n is exactly as above.
In other words,

• ak − 1 6≡ 0 (mod n)

• ak + 1 6≡ 0 (mod n)

• a2k + 1 6≡ 0 (mod n).

On the other hand, since a is not a Fermat-witness for n, we have

0 ≡ an−1 − 1 = a4k − 1 = (a2k − 1)(a2k + 1) = (ak − 1)(ak + 1)(a2k + 1) (mod n).
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Thus, if n = pq is the prime factorisation of n, then p must divide at least one of the factors

(ak − 1), (ak + 1), (a2k + 1),

and so too must q. By the conditions on a above, from a being a Miller–Rabin witness, it
cannot be the case that both p and q divide the same factor. Thus we can recover p and q
by computing

• gcd(ak − 1, n)

• gcd(ak + 1, n)

• gcd(a2k + 1, n),

each of which is a fast operation, by fast powering. At least one of these will be p, and at
least one will be q.

Demonstration from (a):
Taking a = 2 from part (a), this not being a Fermat-witness for n = 341, we compute

gcd(ak − 1, n) = gcd(31, 341) = 31.

Since 341/31 = 11, we have found our prime factorisation. (The second factor, 11, can also
be found via a gcd-computation as above.)
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