
Solutions to the 2020-03-16 exam

Note. The following solutions do not include all computations. The computations do
need to be included on the actual exam.

Question 1

(a) The binary expansion of 840 is 23 + 26 + 28 + 29. By successively squaring the
number 93 modulo 197, we find the following table.

n 0 1 2 3 4 5 6 7 8 9
932n

93 178 164 104 178 164 104 178 164 104

Hence 93840 = 9323 · 9326 · 9328 · 9329 ≡197 104 · 104 · 164 · 104 ≡197 1.

Note. To simplify the computations, one could also note that 197 is prime and
that 840 ≡196 56, so that by Fermat’s little theorem we have 93840 ≡197 9356.

(b) Let g be a primitive of Fp. Then x = gn is a solution to xe ≡p 1 if and only if
p− 1 divides n · e. Let n0 be the smallest n for which this holds. Since the order
of g is p− 1, we see that n0 = p−1

gcd(e,p−1) and that for any solution to gne ≡p 1, the
number n is divisible by n0. In particular, the set of solutions modulo p is given
by

{gk·n0 | 0 ≤ k · n0 < p− 1}.

Since p−1
n0

= gcd(e, p − 1), we see that 0 ≤ k · n0 < p − 1 holds if and only if
0 < k < gcd(e, p− 1), hence there are exactly gcd(e, p− 1) solutions.

(c) Since 2 is a primitive root, it has order 100 in F∗101. Since 32 = 25, we see that 32
has order 20 in F∗101. In particular, if x is a solution to 32x ≡101 14, then all other
solutions are of the form x + 20k where k ∈ Z. By naively computing powers of
32, we find that 322 ≡101 14, hence the set of integer solutions to 32x ≡101 14 is
given by

{2 + 20k | k ∈ Z}.
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Question 2

(a) Let N = 3233 and choose a = 2 as a potential witness for the Miller-Rabin test.
We first compute that gcd(a, N) = 1. By repeatedly dividing N − 1 = 3232 by 2,
we find that 3232 = 25 · 101. The next step is to compute 2101 ≡3233 2405. Since
this is not congruent to 1 modulo N = 3233, we compute the following table by
successive squaring.

n 24052n

0 2405
1 188
2 3014
3 2699
4 652

Since none of these numbers is congruent to −1 modulo 3233, we conclude that
3233 is a composite number and that a = 2 is a Miller-Rabin witness for 3233.

(b) First note that 70 = 2 · 5 · 7. We compute

75·7 ≡71 70, 645·7 ≡71 1
72·7 ≡71 54, 642·7 ≡71 54
72·5 ≡71 45, 642·5 ≡71 45.

By the Pohlig-Hellman algorithm, in order to solve the DLP 7x ≡71 64, we should
solve the following three DLPs:

70x2 ≡71 1
54x5 ≡71 54
45x7 ≡71 45.

As can be read off directly from these congruences, this yields x2 = 0, x5 = 1 and
x7 = 1. It therefore remains to solve the following system of congruences

x ≡ 0 (mod 2),
x ≡ 1 (mod 5),
x ≡ 1 (mod 7).

An application of the Chinese remainder theorem yields the solution x = 36.

Question 3

(a) Since P 6= Q, we first compute λ = ∆y
∆x = 9−2

7−8 = 6 in F13. Then P + Q is given by

P + Q = (x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1) = (8, 11).

(b) First let us find a random point on E. Clearly, (0, 1) lies on E over F211. Since
this this elliptic curve has 202 points, we see that the order of (0, 1) is a divisor of
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202, so this point either has order 1, 2, 101 or 202. Since (0, 1) 6= O and since the
y-coordinate of this point is nonzero, we see that it can’t have order 1 or 2. This
means that it either has order 101 or order 202. In either of these cases it follows
that the point (0, 1) + (0, 1) = (9, 183) has order 101.

(c) In Lenstra’s factorization algorithm, one computes n!P for increasing values of
n, and the algorithm finishes either when the computation of n!P fails or when
it becomes equal to O. In case that the computation “fails”, then this yields a
number k such that 1 < gcd(k, N) < N, hence one has found a non-trivial factor
of N. In the case that n!P becomes equal to O, then the algorithm finishes without
giving a non-trivial factor of N. By the Chinese remainder theorem, the addition
of two points P and Q on E modulo N = pq fails precisely if P + Q = O over Fp
and P + Q 6= O over Fq, or the other way around. In particular, the computation
of n!P on E modulo N fails if the order of P on E(Fp) divides n!, while the order
of P on E(Fq) does not divide n!, or the other way around.

This means that in order to solve this exercise, we should check for which values
of n the numbers 154, 410, 162, 405, 130 and 435 divide n!. One can compute
that none of these numbers divides 8!, while 162 and 405 divide 9!. This implies
that Lenstra’s algorithm finishes first for the elliptic curve given by (A2, a2, b2),
however that it does not give a non-trivial factor of N. Continuing these com-
putations, one notices that 154, 410, 130 and 435 do not divide 10!, but that 154
divides 11! while none of these other numbers do. This implies that the elliptic
curve corresponding to (A1, a1, b1) is the first one for which Lenstra’s algorithm
finishes and gives you a non-trivial factor.

Question 4

Write xi = gαi hβi and yi = gγi hδi . Iteratively computing f (xi) and f ( f (yi)) produces
the table

i xi yi αi βi γi δi
0 1 1 0 0 0 0
1 5 25 1 0 2 0
2 25 30 2 0 4 2
3 20 34 2 1 4 4
4 30 25 4 2 5 5
5 24 30 4 3 10 12
6 34 34 4 4 10 14.

We find the collision x6 = y6 = 34, which yields the congruence g4h4 ≡37 g10h14, hence
that g6 ≡37 h−10. Using the extended Euclidean algorithm, we find that gcd(10, 36) = 2
and that 25 · −10 ≡36 2. In particular, multiplying the exponents on both sides of
g6 ≡37 h−10 by 25, we find that

g6·25 ≡37 g6 ≡37 h2

This means that either g3 ≡37 h or g21 ≡37 h. Computing these powers of g, we find
that g21 ≡37 521 ≡37 23 ≡37 h solves the DLP.
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Question 5

(a) Note that N ≡19 10 and N ≡23 2.

By definition, F(a + k) is divisible by 19 if and only if (a + k)2 ≡19 N ≡19 10. By
computing squares of integers modulo 19, we find that 10 is not a square modulo
19, hence that there exist no value of k ≥ 0 such that F(a + k) is divisible by 19

Similarly, F(a + k) is divisible by 23 if and only if (a + k)2 ≡23 2. By computing
squares modulo 23, we find that 52 ≡23 2, hence that (a + k)2 ≡23 2 if and only if
a + k ≡23 ±5. Since a ≡23 19, we see that 23 divides F(a + k) if and only if k ≡23 9
or k ≡23 22.

(b) We need to find all products of the 11-smooth numbers

(a + 1)2 − N = 22 · 3 · 52 · 7,

(a + 6)2 − N = 32 · 5 · 73,

(a + 286)2 − N = 37 · 5 · 7 · 11,

(a + 421)2 − N = 22 · 33 · 5 · 74,

(a + 3289)2 − N = 22 · 3 · 52 · 72 · 113,

(a + 4389)2 − N = 22 · 32 · 57 · 11,

(a + 5951)2 − N = 22 · 53 · 7 · 114,

that are perfect squares. This amounts to doing linear algebra over F2 with the
exponents of the prime numbers on the right-hand side of the equations above.
To this end, consider the matrix

M =


0 0 0 0 0 0 0
1 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 0 0 1
0 0 1 0 1 1 0

 ,

where the columns correspond to the 11-smooth numbers given above, and the
rows to the prime factors 2, 3, 5, 7 and 11. More precisely, the entry at the i-
th row and j-th column is equal to 1 if, for the j-th 11-smooth number given
above, the exponent of the i-th prime factor is an odd number, and this entry
is equal to 0 otherwise. The perfect squares that can be formed using the given
11-smooth numbers correspond to elements of the kernel of M. Since we are
working modulo 2, the number of elements in ker(M) is equal to 2dim(ker(M)).
Performing Gaussian elimination on the matrix M (modulo 2) yields the matrix

1 0 0 1 0 1 0
0 1 0 1 1 0 1
0 0 1 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 .
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This shows that M has rank 3. Since M has seven columns, it follows that its
kernel must have dimension 4, hence that one can form 24 = 16 perfect squares
out of the given 11-smooth numbers. Note, however, that this also includes the
case 0 = 02, hence there are 15 non-trivial perfect squares that can be formed. Two
examples of vectors in the kernel of M are (0, 1, 0, 0, 0, 0, 1) and (0, 1, 1, 0, 1, 0, 0),
which correspond to the perfect squares

(a + 6)2(a + 5951)2 = 97274162 ≡N 22 · 32 · 54 · 74 · 114

and

(a + 6)2(a + 286)2(a + 3289)2 = 99723101442 ≡N 22 · 310 · 54 · 76 · 114

respectively.

(c) The Euclidean algorithm gives us

gcd(9727416− 2 · 3 · 52 · 72 · 112, N) = 1,

so the first factor perfect square does not give us a non-trivial factor of N. How-
ever,

gcd(9972310144− 2 · 35 · 52 · 73 · 112, N) = 1613,

so we have found that 1613 is a non-trivial factor of N.

5


