
Solutions to the 2020-04-20 exam

Note. The following solutions do not include all computations. The computations do
need to be included on the actual exam.

Question 1

(a) We first invert the coefficients in front of the variable x. We see that 3 · 5 ≡7 1,
that 3 · 7 ≡10 1 and that 7 · 4 ≡27 1, hence the given system of congruences is
equivalent to 

x ≡ 5 · 4 ≡ 4 (mod 7)
x ≡ 4 · 7 ≡ 8 (mod 10)
x ≡ 19 · 4 ≡ 22 (mod 27)

The first congruence yields that x = 7k + 4 for some k ∈ Z. Inserting this in
the second congruence yields 7k ≡10 8 − 4 ≡10 4. Since 3 is a multiplicative
inverse for 7 modulo 10, we find that k ≡10 3 · 4 ≡10 2. In particular, we find that
x = 7(10l + 2) + 4 = 70l + 18 for some l ∈ Z. The third congruence now yields
that

16l ≡27 70l ≡27 22− 18 ≡27 4.

The extended Euclidean algorithm can be used to compute that 22 is a multi-
plicative inverse of 16 modulo 27, hence l ≡27 22 · 4 ≡27 7. We see that the integer
solutions to the given system of congruences are given by x = 70(27m+ 7)+ 18 =
1890m + 508 where m ∈ Z.

(b) First suppose that g ∈ G is a generator. Then ord(g) = N by definition, hence
gN/pi 6= 1 since 0 < N/pi < N. Conversely, suppose that an element g ∈ G is
given such that gN/pi 6= 1 for all prime factors pi of N = pr1

1 · . . . · prk
k = |G|. By

Lagrange’s Theorem, ord(g) is a divisor of N = |G|. If g is not a generator of G,
then ord(g) < N, hence there must be a prime number pi such that pri

i does not
divide ord(g). This implies that gN/pi = 1, which is a contradiction. We therefore
conclude that g is a generator of G.

(c) Fix a primitive root g of Fp. Then a = gn for a unique 0 ≤ n < p − 1. The
equation x2 ≡p a has a solution if and only if n is even. Assume this is the case
and write n = 2i. Then

(a(p+1)/4)2 ≡p g2·2i·(p+1)/4 ≡p g(p+1)i ≡p g2i ≡p a,
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where we use that p + 1 ≡p−1 2. This shows that a(p+1)/4 and −a(p+1)/4 are the
two solutions to x2 ≡p a. On the other hand, if n is odd, then write n = 2j + 1. A
computation similar to the one above shows that a(p+1)/2 ≡p g2j+1+(p−1)/2. Since
g(p−1)/2 ≡p −1, we conclude that a(p+1)/2 = −a.

Question 2

(a) Let N = 28409 and choose a = 5 as a potential witness for the Miller-Rabin test.
We first compute that gcd(a, N) = 1. By repeatedly dividing N − 1 = 28408 by
2, we find that 28408 = 23 · 3551. The next step is to compute that 53551 ≡28409 1.
Since this is congruent to 1 modulo 28409, the test fails and a = 5 is not a witness
for the compositeness of 28409.

(b) First note that 221 = 17 · 13 and that 16 · 12 = 192. An application of the extended
Euclidean algorithm gives us that gcd(77, 192) = 1 and that 5 is a multiplicative
inverse of 77 modulo 192. In particular, the congruence

x77 ≡221 11

has one solution modulo 221, namely 115 ≡221 163. We conclude that the set of
all integer solutions is given by

{77 + 221k | k ∈ Z}.

(c) First note that 47 is prime, hence the order of 11 divides 46. One can check that
112, 1123 6≡47 1, hence the order of 11 must equal 46. Note that b

√
46c+ 1 = 7. We

now make two lists
i 11i 41 · 11−7i

0 1 41
1 11 18
2 27 40
3 15 21
4 24 31
5 29 1
6 37 44
7 31 9

where 11−7 ≡47 44 is computed by applying the extended Euclidean algorithm to
117 ≡47 31. We find two collisions, namely 110 ≡47 41 · 11−35 and 117 ≡47 41 · 1128.
Both of these tell us that 1135 ≡47 41, so x = 35 solves the DLP.

Note. Strictly speaking, we did not have to check whether the order of 11 equals
46 in order to use b

√
46c + 1 = 47. As long as ord(11) ≤ 46, then we know

that Shank’s baby-step giant-leap algorithm will always find at least one collision,
given that a solution exists.
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Question 3

(a) Make the following two tables for F17:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x3 + x + 4 4 6 14 0 4 15 5 14 14 11 11 3 10 4 8 11 2

and
y 0 1 2 3 4 5 6 7 8
y2 0 1 4 9 16 8 2 15 13

By comparing these tables, we find that the set of points on the given elliptic
curve over F17 is

{(0,±2), (3, 0), (4,±2), (5,±7), (13,±2), (14,±5), (16,±6),O}.

(b) A point on an elliptic curve has order 2 if and only if its y-coordinate is 0. The
polynomial x3 − x has three zeroes over F37, namely x = 0 and x = ±1. In
particular, the elliptic curve E has three points of order 2, namely (0, 0), (1, 0) and
(−1, 0). Since any cyclic group has at most one point of order 2, we conclude that
the group of points of E over F37 is not cyclic.

(c) In Lenstra’s factorization algorithm, one computes n!P for increasing values of
n, and the algorithm finishes either when the computation of n!P fails or when
it becomes equal to O. In case that the computation “fails”, then this yields a
number k such that 1 < gcd(k, N) < N, hence one has found a non-trivial factor
of N. In the case that n!P becomes equal to O, then the algorithm finishes without
giving a non-trivial factor of N. By the Chinese remainder theorem, the addition
of two points P and Q on E modulo N = pq fails precisely if P + Q = O over Fp
and P + Q 6= O over Fq, or the other way around. In particular, the computation
of n!P on E modulo N fails if the order of P on E(Fp) divides n!, while the order
of P on E(Fq) does not divide n!, or the other way around.

This means that in order to solve this exercise, we should check for which values
of n the numbers 151, 401, 160, 406, 156 and 408 divide n!. One can compute
that none of these numbers divides 7!, while 160 divides 8!. This implies that
the elliptic curve corresponding to (A2, a2, b2) is the first one for which Lenstra’s
algorithm finishes and gives you a non-trivial factor.

Question 4

Throughout this question, Theorem 6.6 of the book is used to compute the sums of
points on E(F107). Note that 102 = 2 · 3 · 17. In order apply Pohlig-Hellman, we first
to compute 2 · 3P = 6P, 2 · 17P = 34P and 3 · 17P = 51P. Using the given table, this
comes down to computing

6P = 2P + 4P = (36, 87) + (3, 101) = (22, 40),
34P = 2P + 32P = (36, 87) + (51, 41) = (47, 68),
51P = 34P + 16P + P = (47, 68) + (28, 66) + (4, 17) = (106, 0).

3



Note that since none of these points is O, question 1(b) tells us that the order of P on
E(F107) is 102. We now need to compute 6Q, 34Q and 51Q as well. In order to compute
6Q, we first compute 2Q = (47, 39) + (47, 39) = (47, 68). Since Q and 2Q have the
same x-coordinates, we see that they must be inverse to each other; i.e. Q + 2Q = O.
In particular, Q has order 3. Since 6 ≡3 0, while 34 ≡3 1 and 51 ≡3 0, we see that

6Q = 0Q = O,
34Q = Q = (47, 39),
51Q = 0Q = O.

We now need to solve the following three elliptic curve DLPs:

x17 · 6P = x17(22, 40) = 6Q = O,
x3 · 34P = x3(47, 68) = 34Q = (47, 39),
x2 · 51P = x2(106, 0) = 51Q = O.

It can be seen directly that x17 = 0, x2 = 0 and x3 = −1 solve these DLPs. In par-
ticular, a solution to the original DLP xP = Q can be found by solving the system of
congruences 

x ≡ 0 (mod 2),
x ≡ −1 (mod 3),
x ≡ 0 (mod 17).

An application of the Chinese remainder theorem yields that x = 68 is a solution.

Question 5

(a) Note that N ≡19 5 and N ≡23 18.

By definition, F(a + k) is divisible by 19 if and only if (a + k)2 ≡19 N ≡19 5.
By computing squares of integers modulo 19, we find that 92 ≡19 5, hence that
(a + k)2 ≡19 5 if and only if a + k ≡19 ±9. Since a ≡19 14, we see that 19 divides
F(a + k) if and only if k ≡19 14 or k ≡19 15.

Similarly, F(a + k) is divisible by 23 if and only if (a + k)2 ≡23 18. By computing
squares modulo 23, we find that 82 ≡23 18, hence that (a + k)2 ≡23 18 if and only
if a+ k ≡23 ±8. Since a ≡23 7, we see that 23 divides F(a+ k) if and only if k ≡23 1
or k ≡23 8.

(b) We need to find all products of the 13-smooth numbers

(a + 59)2 − N = 22 · 3 · 52 · 7,

(a + 154)2 − N = 32 · 5 · 73,

(a + 559)2 − N = 37 · 5 · 7 · 11,

(a + 1168)2 − N = 22 · 33 · 5 · 74,

(a + 2098)2 − N = 22 · 3 · 52 · 72 · 113,

(a + 2343)2 − N = 22 · 32 · 57 · 11,
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that are perfect squares. This amounts to doing linear algebra over F2 with the
exponents of the prime numbers on the right-hand side of the equations above.
To this end, consider the matrix

M =


0 1 0 1 1 0
0 1 0 1 1 1
1 1 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 ,

where the columns correspond to the 11-smooth numbers given above, and the
rows to the prime factors 2, 3, 5, 7, 11 and 13. More precisely, the entry at the
i-th row and j-th column is equal to 1 if, for the j-th 13-smooth number given
above, the exponent of the i-th prime factor is an odd number, and this entry
is equal to 0 otherwise. The perfect squares that can be formed using the given
13-smooth numbers correspond to elements of the kernel of M. Since we are
working modulo 2, the number of elements in ker(M) is equal to 2dim(ker(M)).
Performing Gaussian elimination on the matrix M (modulo 2) yields the matrix

1 0 1 1 0 0
0 1 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

This shows that M has rank 3. Since M has six columns, it follows that its kernel
must have dimension 3, hence that one can form 23 = 8 perfect squares out of the
given 13-smooth numbers. Note, however, that this also includes the case 0 = 02,
hence there are 7 non-trivial perfect squares that can be formed. Two examples of
vectors in the kernel of M are (1, 0, 1, 0, 0, 0) and (0, 1, 0, 0, 1, 0), which correspond
to the perfect squares

(a + 59)2(a + 559)2 = 23648642 ≡N 34 · 58 · 72 · 132

and
(a + 154)2(a + 2098)2 = 46958412 ≡N 22 · 314 · 52 · 72 · 132,

respectively.

(c) The Euclidean algorithm gives us

gcd(2364864− 32 · 54 · 7 · 13, N) = 1181

and
gcd(4695841− 2 · 37 · 5 · 7 · 13, N) = 1181,

so both perfect squares that we found give us the same factor 1181 of N.
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