Solutions to the 2020-04-20 exam

Note. The following solutions do not include all computations. The computations do need to be included on the actual exam.

Question 1

(a) We first invert the coefficients in front of the variable x. We see that $3 \cdot 5 \equiv_{7} 1$, that $3 \cdot 7 \equiv_{10} 1$ and that $7 \cdot 4 \equiv_{27} 1$, hence the given system of congruences is equivalent to

$$
\left\{\begin{array}{l}
x \equiv 5 \cdot 4 \equiv 4 \quad(\bmod 7) \\
x \equiv 4 \cdot 7 \equiv 8 \quad(\bmod 10) \\
x \equiv 19 \cdot 4 \equiv 22 \quad(\bmod 27)
\end{array}\right.
$$

The first congruence yields that $x=7 k+4$ for some $k \in \mathbb{Z}$. Inserting this in the second congruence yields $7 k \equiv_{10} 8-4 \equiv_{10} 4$. Since 3 is a multiplicative inverse for 7 modulo 10 , we find that $k \equiv_{10} 3 \cdot 4 \equiv_{10} 2$. In particular, we find that $x=7(10 l+2)+4=70 l+18$ for some $l \in \mathbb{Z}$. The third congruence now yields that

$$
16 l \equiv_{27} 70 l \equiv_{27} 22-18 \equiv_{27} 4 .
$$

The extended Euclidean algorithm can be used to compute that 22 is a multiplicative inverse of 16 modulo 27 , hence $l \equiv_{27} 22 \cdot 4 \equiv_{27} 7$. We see that the integer solutions to the given system of congruences are given by $x=70(27 m+7)+18=$ $1890 m+508$ where $m \in \mathbb{Z}$.
(b) First suppose that $g \in G$ is a generator. Then $\operatorname{ord}(g)=N$ by definition, hence $g^{N / p_{i}} \neq 1$ since $0<N / p_{i}<N$. Conversely, suppose that an element $g \in G$ is given such that $g^{N / p_{i}} \neq 1$ for all prime factors p_{i} of $N=p_{1}^{r_{1}} \cdot \ldots \cdot p_{k}^{r_{k}}=|G|$. By Lagrange's Theorem, ord (g) is a divisor of $N=|G|$. If g is not a generator of G, then $\operatorname{ord}(g)<N$, hence there must be a prime number p_{i} such that $p_{i}^{r_{i}}$ does not divide $\operatorname{ord}(g)$. This implies that $g^{N / p_{i}}=1$, which is a contradiction. We therefore conclude that g is a generator of G.
(c) Fix a primitive root g of \mathbb{F}_{p}. Then $a=g^{n}$ for a unique $0 \leq n<p-1$. The equation $x^{2} \equiv_{p} a$ has a solution if and only if n is even. Assume this is the case and write $n=2 i$. Then

$$
\left(a^{(p+1) / 4}\right)^{2} \equiv_{p} g^{2 \cdot 2 i \cdot(p+1) / 4} \equiv_{p} g^{(p+1) i} \equiv_{p} g^{2 i} \equiv_{p} a,
$$

where we use that $p+1 \equiv_{p-1} 2$. This shows that $a^{(p+1) / 4}$ and $-a^{(p+1) / 4}$ are the two solutions to $x^{2} \equiv_{p} a$. On the other hand, if n is odd, then write $n=2 j+1$. A computation similar to the one above shows that $a^{(p+1) / 2} \equiv{ }_{p} g^{2 j+1+(p-1) / 2}$. Since $g^{(p-1) / 2} \equiv_{p}-1$, we conclude that $a^{(p+1) / 2}=-a$.

Question 2

(a) Let $N=28409$ and choose $a=5$ as a potential witness for the Miller-Rabin test. We first compute that $\operatorname{gcd}(a, N)=1$. By repeatedly dividing $N-1=28408$ by 2, we find that $28408=2^{3} \cdot 3551$. The next step is to compute that $5^{3551} \equiv_{28409} 1$. Since this is congruent to 1 modulo 28409, the test fails and $a=5$ is not a witness for the compositeness of 28409 .
(b) First note that $221=17 \cdot 13$ and that $16 \cdot 12=192$. An application of the extended Euclidean algorithm gives us that $\operatorname{gcd}(77,192)=1$ and that 5 is a multiplicative inverse of 77 modulo 192. In particular, the congruence

$$
x^{77} \equiv_{221} 11
$$

has one solution modulo 221 , namely $11^{5} \equiv{ }_{221} 163$. We conclude that the set of all integer solutions is given by

$$
\{77+221 k \mid k \in \mathbb{Z}\}
$$

(c) First note that 47 is prime, hence the order of 11 divides 46 . One can check that $11^{2}, 11^{23} \not 三_{47} 1$, hence the order of 11 must equal 46 . Note that $\lfloor\sqrt{46}\rfloor+1=7$. We now make two lists

i	11^{i}	$41 \cdot 11^{-7 i}$
0	1	41
1	11	18
2	27	40
3	15	21
4	24	31
5	29	1
6	37	44
7	31	9

where $11^{-7} \equiv_{47} 44$ is computed by applying the extended Euclidean algorithm to $11^{7} \equiv_{47} 31$. We find two collisions, namely $11^{0} \equiv_{47} 41 \cdot 11^{-35}$ and $11^{7} \equiv_{47} 41 \cdot 11^{28}$. Both of these tell us that $11^{35} \equiv_{47} 41$, so $x=35$ solves the DLP.

Note. Strictly speaking, we did not have to check whether the order of 11 equals 46 in order to use $\lfloor\sqrt{46}\rfloor+1=47$. As long as ord $(11) \leq 46$, then we know that Shank's baby-step giant-leap algorithm will always find at least one collision, given that a solution exists.

Question 3

(a) Make the following two tables for \mathbb{F}_{17} :

$$
\begin{array}{c|ccccccccccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline x^{3}+x+4 & 4 & 6 & 14 & 0 & 4 & 15 & 5 & 14 & 14 & 11 & 11 & 3 & 10 & 4 & 8 & 11 & 2
\end{array}
$$

and

$$
\begin{array}{c|ccccccccc}
y & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline y^{2} & 0 & 1 & 4 & 9 & 16 & 8 & 2 & 15 & 13
\end{array}
$$

By comparing these tables, we find that the set of points on the given elliptic curve over \mathbb{F}_{17} is

$$
\{(0, \pm 2),(3,0),(4, \pm 2),(5, \pm 7),(13, \pm 2),(14, \pm 5),(16, \pm 6), \mathcal{O}\}
$$

(b) A point on an elliptic curve has order 2 if and only if its y-coordinate is 0 . The polynomial $x^{3}-x$ has three zeroes over \mathbb{F}_{37}, namely $x=0$ and $x= \pm 1$. In particular, the elliptic curve E has three points of order 2, namely $(0,0),(1,0)$ and $(-1,0)$. Since any cyclic group has at most one point of order 2 , we conclude that the group of points of E over \mathbb{F}_{37} is not cyclic.
(c) In Lenstra's factorization algorithm, one computes $n!P$ for increasing values of n, and the algorithm finishes either when the computation of $n!P$ fails or when it becomes equal to \mathcal{O}. In case that the computation "fails", then this yields a number k such that $1<\operatorname{gcd}(k, N)<N$, hence one has found a non-trivial factor of N. In the case that $n!P$ becomes equal to \mathcal{O}, then the algorithm finishes without giving a non-trivial factor of N. By the Chinese remainder theorem, the addition of two points P and Q on E modulo $N=p q$ fails precisely if $P+Q=\mathcal{O}$ over \mathbb{F}_{p} and $P+Q \neq \mathcal{O}$ over \mathbb{F}_{q}, or the other way around. In particular, the computation of $n!P$ on E modulo N fails if the order of P on $E\left(\mathbb{F}_{p}\right)$ divides $n!$, while the order of P on $E\left(\mathbb{F}_{q}\right)$ does not divide $n!$, or the other way around.
This means that in order to solve this exercise, we should check for which values of n the numbers 151, 401, 160, 406, 156 and 408 divide $n!$. One can compute that none of these numbers divides 7 !, while 160 divides 8 !. This implies that the elliptic curve corresponding to $\left(A_{2}, a_{2}, b_{2}\right)$ is the first one for which Lenstra's algorithm finishes and gives you a non-trivial factor.

Question 4

Throughout this question, Theorem 6.6 of the book is used to compute the sums of points on $E\left(\mathbb{F}_{107}\right)$. Note that $102=2 \cdot 3 \cdot 17$. In order apply Pohlig-Hellman, we first to compute $2 \cdot 3 P=6 P, 2 \cdot 17 P=34 P$ and $3 \cdot 17 P=51 P$. Using the given table, this comes down to computing

$$
\begin{aligned}
6 P & =2 P+4 P=(36,87)+(3,101)=(22,40) \\
34 P & =2 P+32 P=(36,87)+(51,41)=(47,68) \\
51 P & =34 P+16 P+P=(47,68)+(28,66)+(4,17)=(106,0)
\end{aligned}
$$

Note that since none of these points is \mathcal{O}, question $1(b)$ tells us that the order of P on $E\left(\mathbb{F}_{107}\right)$ is 102 . We now need to compute $6 Q, 34 Q$ and $51 Q$ as well. In order to compute $6 Q$, we first compute $2 Q=(47,39)+(47,39)=(47,68)$. Since Q and $2 Q$ have the same x-coordinates, we see that they must be inverse to each other; i.e. $Q+2 Q=\mathcal{O}$. In particular, Q has order 3 . Since $6 \equiv_{3} 0$, while $34 \equiv_{3} 1$ and $51 \equiv_{3} 0$, we see that

$$
\begin{aligned}
6 Q & =0 Q=\mathcal{O} \\
34 Q & =Q=(47,39) \\
51 Q & =0 Q=\mathcal{O}
\end{aligned}
$$

We now need to solve the following three elliptic curve DLPs:

$$
\begin{aligned}
& x_{17} \cdot 6 P=x_{17}(22,40)=6 Q=\mathcal{O}, \\
& x_{3} \cdot 34 P=x_{3}(47,68)=34 Q=(47,39) \\
& x_{2} \cdot 51 P=x_{2}(106,0)=51 Q=\mathcal{O} .
\end{aligned}
$$

It can be seen directly that $x_{17}=0, x_{2}=0$ and $x_{3}=-1$ solve these DLPs. In particular, a solution to the original DLP $x P=Q$ can be found by solving the system of congruences

$$
\left\{\begin{array}{l}
x \equiv 0 \quad(\bmod 2), \\
x \equiv-1 \quad(\bmod 3) \\
x \equiv 0 \quad(\bmod 17)
\end{array}\right.
$$

An application of the Chinese remainder theorem yields that $x=68$ is a solution.

Question 5

(a) Note that $N \equiv{ }_{19} 5$ and $N \equiv{ }_{23} 18$.

By definition, $F(a+k)$ is divisible by 19 if and only if $(a+k)^{2} \equiv_{19} N \equiv_{19} 5$. By computing squares of integers modulo 19 , we find that $9^{2} \equiv_{19} 5$, hence that $(a+k)^{2} \equiv_{19} 5$ if and only if $a+k \equiv_{19} \pm 9$. Since $a \equiv_{19} 14$, we see that 19 divides $F(a+k)$ if and only if $k \equiv_{19} 14$ or $k \equiv_{19} 15$.
Similarly, $F(a+k)$ is divisible by 23 if and only if $(a+k)^{2} \equiv 23$ 18. By computing squares modulo 23 , we find that $8^{2} \equiv_{23} 18$, hence that $(a+k)^{2} \equiv_{23} 18$ if and only if $a+k \equiv 23 \pm 8$. Since $a \equiv_{23} 7$, we see that 23 divides $F(a+k)$ if and only if $k \equiv_{23} 1$ or $k \equiv 238$.
(b) We need to find all products of the 13-smooth numbers

$$
\begin{aligned}
(a+59)^{2}-N & =2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \\
(a+154)^{2}-N & =3^{2} \cdot 5 \cdot 7^{3} \\
(a+559)^{2}-N & =3^{7} \cdot 5 \cdot 7 \cdot 11 \\
(a+1168)^{2}-N & =2^{2} \cdot 3^{3} \cdot 5 \cdot 7^{4} \\
(a+2098)^{2}-N & =2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11^{3} \\
(a+2343)^{2}-N & =2^{2} \cdot 3^{2} \cdot 5^{7} \cdot 11
\end{aligned}
$$

that are perfect squares. This amounts to doing linear algebra over \mathbb{F}_{2} with the exponents of the prime numbers on the right-hand side of the equations above. To this end, consider the matrix

$$
M=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where the columns correspond to the 11 -smooth numbers given above, and the rows to the prime factors $2,3,5,7,11$ and 13 . More precisely, the entry at the i-th row and j-th column is equal to 1 if , for the j-th 13 -smooth number given above, the exponent of the i-th prime factor is an odd number, and this entry is equal to 0 otherwise. The perfect squares that can be formed using the given 13 -smooth numbers correspond to elements of the kernel of M. Since we are working modulo 2 , the number of elements in $\operatorname{ker}(M)$ is equal to $2^{\operatorname{dim}(\operatorname{ker}(M))}$. Performing Gaussian elimination on the matrix M (modulo 2) yields the matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

This shows that M has rank 3 . Since M has six columns, it follows that its kernel must have dimension 3 , hence that one can form $2^{3}=8$ perfect squares out of the given 13 -smooth numbers. Note, however, that this also includes the case $0=0^{2}$, hence there are 7 non-trivial perfect squares that can be formed. Two examples of vectors in the kernel of M are ($1,0,1,0,0,0$) and ($0,1,0,0,1,0$), which correspond to the perfect squares

$$
(a+59)^{2}(a+559)^{2}=2364864^{2} \equiv_{N} 3^{4} \cdot 5^{8} \cdot 7^{2} \cdot 13^{2}
$$

and

$$
(a+154)^{2}(a+2098)^{2}=4695841^{2} \equiv_{N} 2^{2} \cdot 3^{14} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2}
$$

respectively.
(c) The Euclidean algorithm gives us

$$
\operatorname{gcd}\left(2364864-3^{2} \cdot 5^{4} \cdot 7 \cdot 13, N\right)=1181
$$

and

$$
\operatorname{gcd}\left(4695841-2 \cdot 3^{7} \cdot 5 \cdot 7 \cdot 13, N\right)=1181
$$

so both perfect squares that we found give us the same factor 1181 of N.

