Solutions to the 2020-04-20 exam

Note. The following solutions do not include all computations. The computations do need to be included on the actual exam.

Question 1

(a) We first invert the coefficients in front of the variable *x*. We see that $3 \cdot 5 \equiv_7 1$, that $3 \cdot 7 \equiv_{10} 1$ and that $7 \cdot 4 \equiv_{27} 1$, hence the given system of congruences is equivalent to

$$\begin{cases} x \equiv 5 \cdot 4 \equiv 4 \pmod{7} \\ x \equiv 4 \cdot 7 \equiv 8 \pmod{10} \\ x \equiv 19 \cdot 4 \equiv 22 \pmod{27} \end{cases}$$

The first congruence yields that x = 7k + 4 for some $k \in \mathbb{Z}$. Inserting this in the second congruence yields $7k \equiv_{10} 8 - 4 \equiv_{10} 4$. Since 3 is a multiplicative inverse for 7 modulo 10, we find that $k \equiv_{10} 3 \cdot 4 \equiv_{10} 2$. In particular, we find that x = 7(10l + 2) + 4 = 70l + 18 for some $l \in \mathbb{Z}$. The third congruence now yields that

$$16l \equiv_{27} 70l \equiv_{27} 22 - 18 \equiv_{27} 4.$$

The extended Euclidean algorithm can be used to compute that 22 is a multiplicative inverse of 16 modulo 27, hence $l \equiv_{27} 22 \cdot 4 \equiv_{27} 7$. We see that the integer solutions to the given system of congruences are given by x = 70(27m + 7) + 18 = 1890m + 508 where $m \in \mathbb{Z}$.

- (b) First suppose that $g \in G$ is a generator. Then $\operatorname{ord}(g) = N$ by definition, hence $g^{N/p_i} \neq 1$ since $0 < N/p_i < N$. Conversely, suppose that an element $g \in G$ is given such that $g^{N/p_i} \neq 1$ for all prime factors p_i of $N = p_1^{r_1} \cdots p_k^{r_k} = |G|$. By Lagrange's Theorem, $\operatorname{ord}(g)$ is a divisor of N = |G|. If g is not a generator of G, then $\operatorname{ord}(g) < N$, hence there must be a prime number p_i such that $p_i^{r_i}$ does not divide $\operatorname{ord}(g)$. This implies that $g^{N/p_i} = 1$, which is a contradiction. We therefore conclude that g is a generator of G.
- (c) Fix a primitive root g of \mathbb{F}_p . Then $a = g^n$ for a unique $0 \le n . The equation <math>x^2 \equiv_p a$ has a solution if and only if n is even. Assume this is the case and write n = 2i. Then

$$(a^{(p+1)/4})^2 \equiv_p g^{2 \cdot 2i \cdot (p+1)/4} \equiv_p g^{(p+1)i} \equiv_p g^{2i} \equiv_p a,$$

where we use that $p + 1 \equiv_{p-1} 2$. This shows that $a^{(p+1)/4}$ and $-a^{(p+1)/4}$ are the two solutions to $x^2 \equiv_p a$. On the other hand, if *n* is odd, then write n = 2j + 1. A computation similar to the one above shows that $a^{(p+1)/2} \equiv_p g^{2j+1+(p-1)/2}$. Since $g^{(p-1)/2} \equiv_p -1$, we conclude that $a^{(p+1)/2} = -a$.

Question 2

- (a) Let N = 28409 and choose a = 5 as a potential witness for the Miller-Rabin test. We first compute that gcd(a, N) = 1. By repeatedly dividing N - 1 = 28408 by 2, we find that $28408 = 2^3 \cdot 3551$. The next step is to compute that $5^{3551} \equiv_{28409} 1$. Since this is congruent to 1 modulo 28409, the test fails and a = 5 is not a witness for the compositeness of 28409.
- (b) First note that $221 = 17 \cdot 13$ and that $16 \cdot 12 = 192$. An application of the extended Euclidean algorithm gives us that gcd(77, 192) = 1 and that 5 is a multiplicative inverse of 77 modulo 192. In particular, the congruence

$$x^{77} \equiv_{221} 11$$

has one solution modulo 221, namely $11^5 \equiv_{221} 163$. We conclude that the set of all integer solutions is given by

$$\{77+221k \mid k \in \mathbb{Z}\}.$$

(c) First note that 47 is prime, hence the order of 11 divides 46. One can check that $11^2, 11^{23} \not\equiv_{47} 1$, hence the order of 11 must equal 46. Note that $\lfloor \sqrt{46} \rfloor + 1 = 7$. We now make two lists

i	$ 11^{i} $	$41 \cdot 11^{-7i}$
0	1	41
1	11	18
2 3	27	40
	15	21
4 5	24	31
5	29	1
6	37	44
7	31	9

where $11^{-7} \equiv_{47} 44$ is computed by applying the extended Euclidean algorithm to $11^7 \equiv_{47} 31$. We find two collisions, namely $11^0 \equiv_{47} 41 \cdot 11^{-35}$ and $11^7 \equiv_{47} 41 \cdot 11^{28}$. Both of these tell us that $11^{35} \equiv_{47} 41$, so x = 35 solves the DLP.

Note. Strictly speaking, we did not have to check whether the order of 11 equals 46 in order to use $\lfloor \sqrt{46} \rfloor + 1 = 47$. As long as $\operatorname{ord}(11) \leq 46$, then we know that Shank's baby-step giant-leap algorithm will always find at least one collision, given that a solution exists.

Question 3

(a) Make the following two tables for \mathbb{F}_{17} :

	x																			
	$x^3 + x + 4$	4	6	14	0	4	15	5	1	4	14	11	11	3	10	4	8	11	2	
an	d						4	•	~		_		_	0						
													7							
				_	y^2	0	1	4	9	16	8	2	15	13						

By comparing these tables, we find that the set of points on the given elliptic curve over \mathbb{F}_{17} is

 $\{(0,\pm 2), (3,0), (4,\pm 2), (5,\pm 7), (13,\pm 2), (14,\pm 5), (16,\pm 6), \mathcal{O}\}.$

- (b) A point on an elliptic curve has order 2 if and only if its *y*-coordinate is 0. The polynomial $x^3 x$ has three zeroes over \mathbb{F}_{37} , namely x = 0 and $x = \pm 1$. In particular, the elliptic curve *E* has three points of order 2, namely (0,0), (1,0) and (-1,0). Since any cyclic group has at most one point of order 2, we conclude that the group of points of *E* over \mathbb{F}_{37} is not cyclic.
- (c) In Lenstra's factorization algorithm, one computes n!P for increasing values of n, and the algorithm finishes either when the computation of n!P fails or when it becomes equal to \mathcal{O} . In case that the computation "fails", then this yields a number k such that $1 < \gcd(k, N) < N$, hence one has found a non-trivial factor of N. In the case that n!P becomes equal to \mathcal{O} , then the algorithm finishes without giving a non-trivial factor of N. By the Chinese remainder theorem, the addition of two points P and Q on E modulo N = pq fails precisely if $P + Q = \mathcal{O}$ over \mathbb{F}_p and $P + Q \neq \mathcal{O}$ over \mathbb{F}_q , or the other way around. In particular, the computation of n!P on E modulo N fails if the order of P on $E(\mathbb{F}_p)$ divides n!, while the order of P on $E(\mathbb{F}_q)$ does not divide n!, or the other way around.

This means that in order to solve this exercise, we should check for which values of *n* the numbers 151, 401, 160, 406, 156 and 408 divide *n*!. One can compute that none of these numbers divides 7!, while 160 divides 8!. This implies that the elliptic curve corresponding to (A_2, a_2, b_2) is the first one for which Lenstra's algorithm finishes and gives you a non-trivial factor.

Question 4

Throughout this question, Theorem 6.6 of the book is used to compute the sums of points on $E(\mathbb{F}_{107})$. Note that $102 = 2 \cdot 3 \cdot 17$. In order apply Pohlig-Hellman, we first to compute $2 \cdot 3P = 6P$, $2 \cdot 17P = 34P$ and $3 \cdot 17P = 51P$. Using the given table, this comes down to computing

$$6P = 2P + 4P = (36,87) + (3,101) = (22,40),$$

$$34P = 2P + 32P = (36,87) + (51,41) = (47,68),$$

$$51P = 34P + 16P + P = (47,68) + (28,66) + (4,17) = (106,0).$$

Note that since none of these points is \mathcal{O} , question 1(b) tells us that the order of P on $E(\mathbb{F}_{107})$ is 102. We now need to compute 6Q, 34Q and 51Q as well. In order to compute 6Q, we first compute 2Q = (47, 39) + (47, 39) = (47, 68). Since Q and 2Q have the same *x*-coordinates, we see that they must be inverse to each other; i.e. $Q + 2Q = \mathcal{O}$. In particular, Q has order 3. Since $6 \equiv_3 0$, while $34 \equiv_3 1$ and $51 \equiv_3 0$, we see that

$$6Q = 0Q = \mathcal{O},$$

 $34Q = Q = (47, 39),$
 $51Q = 0Q = \mathcal{O}.$

We now need to solve the following three elliptic curve DLPs:

$$\begin{aligned} x_{17} \cdot 6P &= x_{17}(22, 40) = 6Q = \mathcal{O}, \\ x_3 \cdot 34P &= x_3(47, 68) = 34Q = (47, 39), \\ x_2 \cdot 51P &= x_2(106, 0) = 51Q = \mathcal{O}. \end{aligned}$$

It can be seen directly that $x_{17} = 0$, $x_2 = 0$ and $x_3 = -1$ solve these DLPs. In particular, a solution to the original DLP xP = Q can be found by solving the system of congruences

$$\begin{cases} x \equiv 0 \pmod{2}, \\ x \equiv -1 \pmod{3}, \\ x \equiv 0 \pmod{17}. \end{cases}$$

An application of the Chinese remainder theorem yields that x = 68 is a solution.

Question 5

(a) Note that $N \equiv_{19} 5$ and $N \equiv_{23} 18$.

By definition, F(a + k) is divisible by 19 if and only if $(a + k)^2 \equiv_{19} N \equiv_{19} 5$. By computing squares of integers modulo 19, we find that $9^2 \equiv_{19} 5$, hence that $(a + k)^2 \equiv_{19} 5$ if and only if $a + k \equiv_{19} \pm 9$. Since $a \equiv_{19} 14$, we see that 19 divides F(a + k) if and only if $k \equiv_{19} 14$ or $k \equiv_{19} 15$.

Similarly, F(a + k) is divisible by 23 if and only if $(a + k)^2 \equiv_{23} 18$. By computing squares modulo 23, we find that $8^2 \equiv_{23} 18$, hence that $(a + k)^2 \equiv_{23} 18$ if and only if $a + k \equiv_{23} \pm 8$. Since $a \equiv_{23} 7$, we see that 23 divides F(a + k) if and only if $k \equiv_{23} 1$ or $k \equiv_{23} 8$.

(b) We need to find all products of the 13-smooth numbers

$$(a+59)^{2} - N = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7,$$

$$(a+154)^{2} - N = 3^{2} \cdot 5 \cdot 7^{3},$$

$$(a+559)^{2} - N = 3^{7} \cdot 5 \cdot 7 \cdot 11,$$

$$(a+1168)^{2} - N = 2^{2} \cdot 3^{3} \cdot 5 \cdot 7^{4},$$

$$(a+2098)^{2} - N = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11^{3},$$

$$(a+2343)^{2} - N = 2^{2} \cdot 3^{2} \cdot 5^{7} \cdot 11,$$

that are perfect squares. This amounts to doing linear algebra over \mathbb{F}_2 with the exponents of the prime numbers on the right-hand side of the equations above. To this end, consider the matrix

where the columns correspond to the 11-smooth numbers given above, and the rows to the prime factors 2, 3, 5, 7, 11 and 13. More precisely, the entry at the *i*-th row and *j*-th column is equal to 1 if, for the *j*-th 13-smooth number given above, the exponent of the *i*-th prime factor is an odd number, and this entry is equal to 0 otherwise. The perfect squares that can be formed using the given 13-smooth numbers correspond to elements of the kernel of *M*. Since we are working modulo 2, the number of elements in ker(*M*) is equal to $2^{\dim(\ker(M))}$. Performing Gaussian elimination on the matrix *M* (modulo 2) yields the matrix

This shows that *M* has rank 3. Since *M* has six columns, it follows that its kernel must have dimension 3, hence that one can form $2^3 = 8$ perfect squares out of the given 13-smooth numbers. Note, however, that this also includes the case $0 = 0^2$, hence there are 7 non-trivial perfect squares that can be formed. Two examples of vectors in the kernel of *M* are (1,0,1,0,0,0) and (0,1,0,0,1,0), which correspond to the perfect squares

$$(a+59)^2(a+559)^2 = 2364864^2 \equiv_N 3^4 \cdot 5^8 \cdot 7^2 \cdot 13^2$$

and

$$(a+154)^2(a+2098)^2 = 4695841^2 \equiv_N 2^2 \cdot 3^{14} \cdot 5^2 \cdot 7^2 \cdot 13^2$$

respectively.

(c) The Euclidean algorithm gives us

$$\gcd(2364864 - 3^2 \cdot 5^4 \cdot 7 \cdot 13, N) = 1181$$

and

$$gcd(4695841 - 2 \cdot 3^7 \cdot 5 \cdot 7 \cdot 13, N) = 1181,$$

so both perfect squares that we found give us the same factor 1181 of N.