Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2021-05-25

Problem 1

(a) We find $B(0,1)=e^{-y(0,1)}=0.9139, B(0,2)=e^{-2 y(0,2)}=0.8187$ and $B(1,2)=B(0,2) / B(0,1)=0.8958$ (compare p. 249 in Capinski \& Zastawniak).
(b) The interest we search for is $f(0,1,2)=(2 y(0,2)-y(0,1)) /(2-1)=0.11$ (compare p. 251 in Capinski \& Zastawniak). At time 2 you will therefore have $100 e^{0.11}=111.6278$.

Problem 2

(a) You need to invest P today, where P is the present value of the infinite stream of payments:

$$
\begin{aligned}
P & =C \frac{1}{1+\frac{r}{4}}+C \frac{1+\frac{g}{4}}{\left(1+\frac{r}{4}\right)^{2}}+C \frac{\left(1+\frac{g}{4}\right)^{2}}{\left(1+\frac{r}{4}\right)^{3}}+\ldots \\
& =C \frac{1}{1+\frac{r}{4}} \sum_{t=0}^{\infty}\left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)^{t}=C \frac{1}{1+\frac{r}{4}} \frac{1}{1-\frac{1+\frac{g}{4}}{1+\frac{r}{4}}}=\frac{C}{\frac{r}{4}-\frac{g}{4}}=\frac{4 C}{r-g}
\end{aligned}
$$

With $C=\$ 100, g=0.02$, and $r=0.05$ we obtain $P \approx \$ 13333.33$.
(b) If you receive payments for n quarters, the present value of the future payments is

$$
\begin{aligned}
P_{n} & =C \frac{1}{1+\frac{r}{4}}+C \frac{1+\frac{g}{4}}{\left(1+\frac{r}{4}\right)^{2}}+\ldots+C \frac{\left(1+\frac{g}{4}\right)^{n-1}}{\left(1+\frac{r}{4}\right)^{n}} \\
& =C \frac{1}{1+\frac{r}{4}} \sum_{t=0}^{n-1}\left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)^{t}=C \frac{1}{1+\frac{r}{4}} \frac{1-\left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)^{n}}{1-\frac{1+\frac{g}{4}}{1+\frac{r}{4}}}=4 C \frac{1-\left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)^{n}}{r-g}
\end{aligned}
$$

We want to find n such that $P_{n} \leq 4000$, hence

$$
1-\left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)^{n} \leq \frac{4000(r-g)}{4 C}=\frac{3}{10}
$$

hence

$$
n \leq \frac{\log \left(\frac{7}{10}\right)}{\log \left(\frac{1+\frac{g}{4}}{1+\frac{r}{4}}\right)}
$$

from which we obtain $n \leq 47.972 \ldots$... Thus n will be equal to 47 quarters, which means that you will receive payments for 11.75 years.

Problem 3

(a) The solution is given in Capinski \& Zastawniak p. 83, Theorem 3.33. With the notation of the book, the formula is

$$
\mathbf{w}_{M}=\frac{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1}}{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1} \mathbf{u}^{\top}}
$$

Standard calculations give

$$
\mathbf{C}^{-1} \approx\left(\begin{array}{ccc}
59.87 & -12.72 & -28.95 \\
-12.72 & 14.91 & 1.75 \\
-28.95 & 1.75 & 31.58
\end{array}\right)
$$

and

$$
\mathbf{w}_{M} \approx(-1.651,0.636,2.016)
$$

(b) Since the market consists of three stocks and a risk-free asset, the portfolio with the largest expected return given a specific standard deviation can be found on the capital market line. Hence we invest x dollars in the risk-free asset and $(1000-x)$ dollars in the market portfolio. Since the risk-free return has no risk, the risk of this portfolio is

$$
\sigma_{P}=\sqrt{(1000-x)^{2} \sigma_{M}^{2}}=|1000-x| \sigma_{M}
$$

and

$$
\sigma_{M}=\sqrt{\mathbf{w}_{M} \mathbf{C w}_{M}^{\top}}
$$

Standard calculations lead to

$$
\sigma_{M}=0.401 \ldots
$$

The requirement $\sigma_{P} \leq 100$ leads to

$$
|1000-x| \leq \frac{100}{\sigma_{M}}
$$

Since we want to maximise the return, we want to invest as much as possible in the market portfolio, hence $1000-x>0$, and the inequality above becomes an equality, i.e.

$$
1000-x=\frac{100}{\sigma_{M}}=249.196 \ldots
$$

Hence we should invest $(1000-x) \approx \$ 249.20$ in the market portfolio, and $x \approx \$ 750.80$ in the risk-free asset.

Problem 4

What we are asked to do is to find the optimal hedge ratio, see around p 106-107 in Capinski \& Zastawniak. If you enter into N short futures then your total position at t is

$$
10 S(t)-N(f(t, T)-f(0, T))
$$

where first term is your wealth in the shares and the second term is the payment you make due to marking-to-market in the futures position. Hence, we should minimize

$$
V(10 S(t)-N(f(t, T)-f(0, T)) .
$$

Using that $f(0, T)$ is known at time 0 and that $f(t, T)=S(t) e^{r(T-t)}$ (see p. 101) we note that what we should minimize can be rewritten

$$
\begin{aligned}
& V(10 S(t)-N(f(t, T)-f(0, T)) \\
& =10^{2} V(S(t))+N^{2} V(f(t, T))-2 \cdot 10 N \operatorname{Cov}(f(t, T), S(t)) \\
& =100 V(S(t))+N^{2} V\left(S(t) e^{r(T-t)}\right)-20 N \operatorname{Cov}\left(S(t) e^{r(T-t)}, S(t)\right) \\
& =100 V(S(t))+N^{2} e^{2 r(T-t)} V(S(t))-20 N e^{r(T-t)} \operatorname{Cov}(S(t), S(t)) \\
& =100 V(S(t))+N^{2} e^{2 r(T-t)} V(S(t))-20 N e^{r(T-t)} V(S(t)) .
\end{aligned}
$$

Taking the derivative with respect to N and setting it to zero yields

$$
N^{*}=\frac{10}{e^{r(T-t)}}
$$

which is therefore (since the function we want to minimize is a quadratic function in N) the optimal number of contracts we should short.

Using the above we see that the corresponding minimal risk is

$$
\begin{aligned}
& 100 V(S(t))+\left(N^{*}\right)^{2} e^{2 r(T-t)} V(S(t))-20 N^{*} e^{r(T-t)} V(S(t)) \\
& =100 V(S(t))+\left(\frac{10}{e^{r(T-t)}}\right)^{2} e^{2 r(T-t)} V(S(t))-20 \frac{10}{e^{r(T-t)}} e^{r(T-t)} V(S(t)) \\
& =100 V(S(t))+100 V(S(t))-200 V(S(t)) \\
& =0
\end{aligned}
$$

Problem 5

Recall that the time 0 expected value of a Wiener process is zero, for each t. Hence, we find (see around p 214 in Capinski \& Zastawniak)

$$
\begin{aligned}
V(0) & =e^{-r T} E_{*}[G(S(T))] \\
& =e^{-r T} E_{*}\left[\ln \left[S(0) e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{*}(T)}\right]\right]= \\
& =e^{-r T} E_{*}\left[\ln [S(0)]+\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{*}(T)\right]= \\
& =e^{-r T}\left[\ln [S(0)]+\left(r-\frac{1}{2} \sigma^{2}\right) T\right] .
\end{aligned}
$$

Noting that $\sigma W_{*}(T) \in N\left(0, \sigma^{2} T\right)$ and recalling from basic probability the moment generating function for the normal distribution, we find

$$
\begin{aligned}
V(0) & =e^{-r T} E_{*}[\tilde{G}(S(T))] \\
& =e^{-r T} E_{*}\left[S^{n}(0) e^{n\left(r-\frac{1}{2} \sigma^{2}\right) T+n \sigma W_{*}(T)}\right] \\
& =S^{n}(0) e^{\left((n-1) r-\frac{n}{2} \sigma^{2}\right) T} E_{*}\left[e^{n \sigma W_{*}(T)}\right] \\
& =S^{n}(0) e^{\left((n-1) r-\frac{n}{2} \sigma^{2}\right) T} e^{\frac{1}{2} \sigma^{2} T n^{2}} \\
& =S^{n}(0) e^{(n-1) r T+\frac{1}{2} \sigma^{2}\left(n^{2}-n\right) T} .
\end{aligned}
$$

