STOCKHOLMS UNIVERSITET,
MATEMATISKA INSTITUTIONEN,
Avd. Matematisk statistik

Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2021-05-25

Problem 1
(a) We find B(0,1) = e ¥ = 0.9139, B(0,2) = ¢ 2¥(®2) = 0.8187 and
B(1,2) = B(0,2)/B(0,1) = 0.8958 (compare p. 249 in Capinski & Zastawniak).

(b) The interest we search for is f(0,1,2) = (2y(0,2) — y(0,1))/(2 — 1) = 0.11
(compare p. 251 in Capinski & Zastawniak). At time 2 you will therefore have
100e% = 111.6278.

Problem 2

(a) You need to invest P today, where P is the present value of the infinite
stream of payments:

1 1+ 4 (14 9)?
P=C——-+C 4 4+C K
1+7 (1+%)? (1+7%)3

:Cli(lJr%)t:Cl 1 _ ¢ _ 4
1+£t:0 I+7 1+£1_1i§ 27% "

With C' = $100, g = 0.02, and r = 0.05 we obtain P ~ $13 333.33.

(b) If you receive payments for n quarters, the present value of the future
payments is
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We want to find n such that P, < 4000, hence
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from which we obtain n < 47.972.... Thus n will be equal to 47 quarters, which
means that you will receive payments for 11.75 years.
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Problem 3
(a) The solution is given in Capinski & Zastawniak p. 83, Theorem 3.33. With

the notation of the book, the formula is
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Standard calculations give
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and

S ( —1.651,0.636, 2.016).

(b) Since the market consists of three stocks and a risk-free asset, the portfolio
with the largest expected return given a specific standard deviation can be found
on the capital market line. Hence we invest x dollars in the risk-free asset and
(1000 — ) dollars in the market portfolio. Since the risk-free return has no risk,
the risk of this portfolio is

op = 4/(1000 — z)203%, = |1000 — z|oas,
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Standard calculations lead to

and
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The requirement op < 100 leads to
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Since we want to maximise the return, we want to invest as much as possible in
the market portfolio, hence 1000 — x > 0, and the inequality above becomes an
equality, i.e.

1000 —z = =249.196. ..
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Hence we should invest (1000 — z) ~ $249.20 in the market portfolio, and
x = $750.80 in the risk-free asset.

Problem 4

What we are asked to do is to find the optimal hedge ratio, see around p 106-107
in Capinski & Zastawniak. If you enter into IV short futures then your total
position at t is

10S(t) = N(f(t,T) — £(0,T))



where first term is your wealth in the shares and the second term is the payment
you make due to marking-to-market in the futures position. Hence, we should
minimize

V(].OS(t) - N(f(ta T) - f(OaT))
Using that f(0,7) is known at time 0 and that f(t,7) = S(t)e" "= (see p.
101) we note that what we should minimize can be rewritten
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Taking the derivative with respect to N and setting it to zero yields
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which is therefore (since the function we want to minimize is a quadratic function
in N) the optimal number of contracts we should short.
Using the above we see that the corresponding minimal risk is
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Problem 5

Recall that the time 0 expected value of a Wiener process is zero, for each t.
Hence, we find (see around p 214 in Capinski & Zastawniak)
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Noting that oW, (T) € N(0,02T) and recalling from basic probability the mo-
ment generating function for the normal distribution, we find
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