Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2021-08-19

Problem 1

(A) The present value is

$$
\begin{aligned}
P & =\sum_{t=0}^{10 \cdot 12-1} \frac{C}{(1+r / 12)^{t+35 \cdot 12}}=\frac{C}{(1+r / 12)^{35 \cdot 12}} \sum_{t=0}^{119}(1+r / 12)^{-t} \\
& =\frac{C}{(1+r / 12)^{420}} \frac{1-(1+r / 12)^{-120}}{1-(1+r / 12)^{-1}} .
\end{aligned}
$$

With $C=10000 \mathrm{kr}$ and $r=0.03$, we obtain $P \approx 363784 \mathrm{kr}$.
(B) We need to find the amount D deposited monthly such that the present value of the deposits equals the present value in (A). The present value of the deposits is

$$
\sum_{t=0}^{35 \cdot 12-1} \frac{D}{(1+r / 12)^{t}}=D \sum_{t=0}^{419}(1+r / 12)^{-t}=D \frac{1-(1+r / 12)^{-420}}{1-(1+r / 12)^{-1}}
$$

Setting this expression equal to P from (a) yields

$$
D=P \frac{1-(1+r / 12)^{-1}}{1-(1+r / 12)^{-420}}=1396.532 \ldots
$$

Hence John needs to deposit 1397 kr each month.

Problem 2

See e.g. sections 6.1-6.2 in Capinski \& Zastawniak. Using the information in the question we find that

$$
\begin{aligned}
p_{*} & =\frac{R-D}{U-D}=-D \\
S^{u u} & =S(0)(1+U)^{2}=(2+D)^{2} \\
S^{u d} & =S(0)(1+U)(1+D)=(2+D)(1+D) \\
S^{d d} & =S(0)(1+D)^{2}=(1+D)^{2}
\end{aligned}
$$

and that $D \in(-1,0)$ and $U=1+D \in(0,1)$. Using this (which yields e.g. $\left.\left(S^{d d}-X\right)_{+}=0\right)$, the risk-neutral valuation formula gives

$$
\begin{aligned}
C_{E} & =\frac{1}{(1+R)^{2}} E_{*}\left[(S(2)-X)_{+}\right] \\
& =\left[p_{*}^{2}\left(S^{u u}-X\right)_{+}+2 p_{*}\left(1-p_{*}\right)\left(S^{u d}-X\right)_{+}+\left(1-p_{*}\right)^{2}\left(S^{d d}-X\right)_{+}\right] \\
& =\left[D^{2}\left((2+D)^{2}-1\right)-2 D(1+D)((2+D)(1+D)-1)_{+}\right] \\
& =D\left[D\left((2+D)^{2}-1\right)-2(1+D)((2+D)(1+D)-1)_{+}\right]
\end{aligned}
$$

Plugging in $D=-0.5$ into the formula gives $C_{E}=0.3125$.

Problem 3

(A) The solution to the variance-minimisation problem is given in Capinski \& Zastawniak p. 73. With the notation of the book, the formula is

$$
\mathbf{w}_{\mathrm{MVP}}=\frac{\mathbf{u C ^ { - 1 }}}{\mathbf{u} \mathbf{C}^{-1} \mathbf{u}^{\top}}
$$

Standard calculations give

$$
\mathbf{C}^{-1} \approx\left(\begin{array}{ccc}
43.07 & -41.29 & 23.09 \\
-41.29 & 100.10 & -47.55 \\
23.09 & -47.55 & 34.16
\end{array}\right)
$$

and

$$
\mathbf{w}_{\mathrm{MVP}} \approx(0.543,0.246,0.212)
$$

(B) The solution is given in Capinski \& Zastawniak p. 75. With the notation of the book, the formula is

$$
\mathbf{w}_{V}=\mathbf{a} \mu_{V}+\mathbf{b} .
$$

We have

$$
2 \mathbf{w}_{V}=\lambda_{1} \mathbf{m} \mathbf{C}^{-1}+\lambda_{2} \mathbf{u} \mathbf{C}^{-1}
$$

and

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=2 M^{-1}\left[\begin{array}{c}
\mu_{V} \\
1
\end{array}\right]
$$

where

$$
M=\left[\begin{array}{cc}
\mathbf{m} \mathbf{C}^{-1} \mathbf{m}^{\top} & \mathbf{u} \mathbf{C}^{-1} \mathbf{m}^{\top} \\
\mathbf{m} \mathbf{C}^{-1} \mathbf{u}^{\top} & \mathbf{u C ^ { - 1 }} \mathbf{u}^{\top}
\end{array}\right] .
$$

Let $M_{11}=\mathbf{m C} \mathbf{C}^{-1} \mathbf{m}^{\top}, M_{12}=\mathbf{u} \mathbf{C}^{-1} \mathbf{m}^{\top}=\mathbf{m} \mathbf{C}^{-1} \mathbf{u}^{\top}$, and $M_{22}=\mathbf{u C} \mathbf{C}^{-1} \mathbf{u}^{\top}$. Then

$$
M^{-1}=\frac{1}{M_{11} M_{22}-M_{12}^{2}}\left[\begin{array}{cc}
M_{22} & -M_{12} \\
-M_{12} & M_{11}
\end{array}\right] .
$$

This leads to

$$
\begin{aligned}
{\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] } & =\frac{2}{M_{11} M_{22}-M_{12}^{2}}\left[\begin{array}{cc}
M_{22} & -M_{12} \\
-M_{12} & M_{11}
\end{array}\right]\left[\begin{array}{c}
\mu_{V} \\
1
\end{array}\right] \\
& =\frac{2}{M_{11} M_{22}-M_{12}^{2}}\left[\begin{array}{l}
M_{22} \mu_{V}-M_{12} \\
M_{11}-M_{12} \mu_{V}
\end{array}\right],
\end{aligned}
$$

hence

$$
\begin{aligned}
\mathbf{w}_{V} & =\frac{1}{M_{11} M_{22}-M_{12}^{2}}\left(\left(M_{22} \mu_{V}-M_{12}\right) \mathbf{m}+\left(M_{11}-M_{12} \mu_{V}\right) \mathbf{u}\right) \mathbf{C}^{-1} \\
& =\frac{1}{M_{11} M_{22}-M_{12}^{2}}\left(\mu_{V}\left(M_{22} \mathbf{m}-M_{12} \mathbf{u}\right)+M_{11} \mathbf{u}-M_{12} \mathbf{m}\right) \mathbf{C}^{-1}
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& \mathbf{a}=\frac{\left(M_{22} \mathbf{m}-M_{12} \mathbf{u}\right) \mathbf{C}^{-1}}{M_{11} M_{22}-M_{12}^{2}} \\
& \mathbf{b}=\frac{\left(M_{11} \mathbf{u}-M_{12} \mathbf{m}\right) \mathbf{C}^{-1}}{M_{11} M_{22}-M_{12}^{2}}
\end{aligned}
$$

Hence,

$$
\mathbf{a} \approx\left[\begin{array}{lll}
4.878 & -12.398 & 7.520
\end{array}\right], \quad \mathbf{b} \approx\left[\begin{array}{lll}
-0.268 & 2.307 & -1.039
\end{array}\right]
$$

and the weights of the portfolio on the minimum variance line is given by

$$
\mathbf{w}_{V}=\mathbf{a} \mu_{V}+\mathbf{b}
$$

with the numerical vectors \mathbf{a} and \mathbf{b} given above; and the weights of the portfolio on the minimum variance line with expected return 10% is

$$
\mathbf{w}_{V}=0.1 \mathbf{a}+\mathbf{b} \approx\left[\begin{array}{lll}
0.220 & 1.067 & -0.287
\end{array}\right]
$$

Problem 4

(A) The derivative gives you the fixed amount 1 in case the price of the underlying exceeds 5 (the strike price) at maturity, and 0 otherwise (sometimes called a cash-or-nothing option).
(B) With $T=1$, and the usual notation, we find (see around page 214 in Capinski \& Zastawniak)

$$
\begin{aligned}
V(0) & =e^{-r T} E_{*}\left(I_{\{S(T) \geq 5\}}\right) \\
& =e^{-r} E_{*}\left(I_{\left\{S(0) e^{\left(r-\frac{1}{2} \sigma^{2}\right)+\sigma W_{*}(1)} \geq 5\right\}}\right) \\
& =e^{-r} E_{*}\left(I_{\left\{W_{*}(1) \geq\left(\ln (5 / S(0))-\left(r-\frac{1}{2} \sigma^{2}\right)\right) / \sigma\right\}}\right) .
\end{aligned}
$$

Hence, with some rewriting and basic probability we find

$$
\begin{aligned}
V(0) & =e^{-r} E_{*}\left(I_{\left\{W_{*}(1) \geq\left(\ln (5 / S(0))-\left(r-\frac{1}{2} \sigma^{2}\right)\right) / \sigma\right\}}\right) \\
& =e^{-r} P_{*}\left(W_{*}(1) \geq\left(\ln (5 / S(0))-\left(r-\frac{1}{2} \sigma^{2}\right)\right) / \sigma\right) \\
& =e^{-r}\left(1-P_{*}\left(W_{*}(1) \leq\left(\ln (5 / S(0))-\left(r-\frac{1}{2} \sigma^{2}\right)\right) / \sigma\right)\right)
\end{aligned}
$$

Recalling that $W_{*}(1)$ is a standard normal random variable and denoting the corresponding distribution function by N, we find the pricing formula

$$
V(0)=e^{-r}\left(1-N\left(\frac{\ln (5 / S(0))-\left(r-\frac{1}{2} \sigma^{2}\right)}{\sigma}\right)\right)
$$

or equivalently

$$
V(0)=e^{-r} N\left(\frac{\ln (S(0) / 5)+\left(r-\frac{1}{2} \sigma^{2}\right)}{\sigma}\right)
$$

Problem 5

(A) Plugging in the parameters into the Black-Scholes formula gives $C_{E}(0)=$ 54.78 (Capinski \& Zastawniak p. 215).
(B) See around Capinski \& Zastawniak p. 227 for the VaR part of the question: Note that the share price at $T=1$ exceeds 70.93 with probability 0.95 i.e.

$$
P(S(1)>70.93)=0.95
$$

To see this let Z be a standard normal random variable and solve the equation

$$
\begin{gathered}
P(S(1)>y)=0.95 \\
\Leftrightarrow P\left(S(0) e^{\mu+\sigma Z}>y\right)=0.95 \\
\Leftrightarrow P\left(Z<\frac{\ln (y / S(0))-\mu}{\sigma}\right)=0.05 \\
\Leftrightarrow y=S(0) e^{N^{-1}(0.05) \sigma+\mu}
\end{gathered}
$$

which yields $y=70.93$ (recall that $\left.N^{-1}(0.05) \approx-1.645\right)$. Hence, the option will end up being in the money (i.e. $S(1)>X=50$) with a probability exceeding 0.95^{-1}, i.e. the worst thing that can, at the 95% confidence level, happen is that our payoff is $70.93-50=20.93$; which corresponds to a loss of $54.78 e^{0.1}-20.93=39.61$, i.e. at the 95% confidence level we have $V a R=39.61$ (note that $54.78 e^{0.1}$ is the payoff we would have gotten if we instead of buying the option would have invested the same amount in the risk-free rate).
Some further hints for the solution is to note that we aim at solving the equation

$$
P\left(C_{E}(0) e^{r}-C_{E}(1)<V a R\right)=0.95
$$

which (using the observations above and plugging in numbers) corresponds to

$$
\begin{gathered}
P\left(C_{E}(0) e^{r}-(S(1)-X)<V a R\right)=0.95 \\
\Leftrightarrow P\left(S(1)>C_{E}(0) e^{r}+X-V a R\right)=0.95 \\
\Leftrightarrow C_{E}(0) e^{r}+X-V a R=70.93 \\
\Leftrightarrow V a R=C_{E}(0) e^{r}+X-70.93=39.61 .
\end{gathered}
$$

[^0]
[^0]: ${ }^{1}$ Note that a complete solution must include an observation of this type.

