Examinator: Lars Arvestad
Lecturer and exam designer: Marc Hellmuth

General Information (that was already listed at the homepage)

It is not allowed to share answers!

- All single pages of your solutions must be clearly marked with your StudentID and name (no anonymity code).
- You have 2 hours to solve the exam and you get additional 20 minutes to upload your solutions.

Hence, upload your solutions not later than April 26-3:20pm at the bottom of the Kurser "DA3004" homepage under PRE-EXAM or using the link
https://kurser.math.su.se/mod/assign/view.php?id=62321.
ONLY IN CASE something does not work with the upload, you can also send your solutions via email to marc.hellmuth@math.su.se.

- In case you have questions during the exam, use the zoom-link https://stockholmuniversity.zoom.us/j/68673538207
- In total, you can get 100 points and you need to get at least 55 points to pass the exam.

Problem	1	2	3	4	5	6	7	8	TOTAL
Points									

Given is the following Turing machine M with initial state q_{0} and blank symbol " \checkmark " (in simplified finite state representation):

(a) Which language does this Turing mashing recognize?
(b) What is final string on the tape for accepted strings?
10) the language that contains all strings

$$
\text { of the form: } \underbrace{1 \ldots 1}_{m \text { times }}+\underbrace{1 \ldots 1}_{n \text { times }} \text {, integ. min } \begin{aligned}
& \text { with } m \geq 1 \\
& n \geq 0
\end{aligned}
$$

b) "+" replaces by " 7 " \& last " 1 " moved (if existent) So we get concatenation of all 1

$$
{\underset{m}{\text { rimes }}}_{1-1}^{1-1}+\underbrace{1 \ldots 1}_{n \text { times }}+\underbrace{1 \ldots 1}_{m \text { times }} \underbrace{1 \ldots 1}_{n \text { times }}
$$

(a) Show that $T(n)=n-1 \in \Theta(n)$ (in "big-Theta").
(b) Consider the following algorithm for searching an integer x in a sorted list A of size n.

```
Find (integer \(x\), list \(A\) of size \(n\) )
\(L=0\)
\(R=n-1\)
while \(L \leq R\) do
    \(m=\left\lfloor\frac{L}{2}\right\rfloor\)
        if \(A[m]<x\) then
            \(L=m+1\)
        else if \(A[m]>x\) then
            \(R=m-1\)
        else return \(m\)
    return " \(x\) not found"
```

Here, $\left\lfloor\frac{L+R}{2}\right\rfloor$ is the floor function that returns the greatest integer less than or equal to $\frac{L+R}{2}$. Determine the runtime in big-O notation (best possible bound) assuming that all basic operations (e.g. return, addition, mulitplication, cases, floor, assignments, ...) can be done in constant time. Explain your results.

$$
\text { na) to show } \begin{aligned}
T(n) & \in \Omega(n) \\
& \in O(n) \\
T(n)=n-1 & \leq n \quad \forall n \geq 2 \Rightarrow n-1 \in O(n) \\
c n \leq n-1 & \Leftrightarrow c \leq \frac{n-1}{n}=1-\frac{1}{n} \\
& \Rightarrow c h o o s e c=\frac{1}{2} \\
& \Rightarrow \frac{1}{2} n \leq n-1 \quad \forall n \geq 2 \Rightarrow(n-1) \in \Omega(n) \\
& \Rightarrow n-1 \in \theta(n)
\end{aligned}
$$

b) this is just a sketch of solution:

$$
\begin{aligned}
& \text { all steps consternt } \rightarrow Q \text { : fou logs does whole run? } \\
& \text { in cadslep of while } m \simeq \frac{L+R}{2} \text { \& stat wire } L+R=n \\
& \Rightarrow T(n)=T(n)+T\left(\frac{n}{2}\right) \\
& =N(T(n))+T\left(\frac{n}{2 N}\right) \rightarrow \begin{aligned}
\text { while loop slow } \\
\text { aw Steps. }
\end{aligned} \\
& \underbrace{2 R}_{m} \text { in each step hared } \\
& \Rightarrow N=\log _{2}(n) \Rightarrow \log _{2}(n) T(n)+T\left(\frac{n}{2^{\log _{2}(n}}\right) \\
& \rightarrow O\left(\log _{2}(n)\right)
\end{aligned}
$$

Problem 3 (Complexity)
Suppose we are given a decision problem A that has as one of the inputs an arbitrary undirected graph. Let \mathcal{T} denote the set of all graphs that are trees and \mathcal{F} denote the set of all graphs that are forests.
(a) Assume we have shown NP-hardness of A by reduction from 3-SAT by constructing a special disconnected forest $G \in \mathcal{F}$. Explain shortly, if this implies that A is NP-hard for the class of graphs in \mathcal{T} ?
(b) Assume we have shown NP-hardness of A by reduction from 3-SAT by constructing a special tree $G \in \mathcal{T}$. Explain shortly, if this implies that A is NP-hard for the class of graphs in \mathcal{F} ?
a) We don't know whither the problem remains NP-herd for graphs ir T, since NP-hardmens was show only for gropius that are not contenined, in T.
6) Yes, this implies NPherdans for egrophs in F since we have used a redacbivn to some $G \in T \leq F$

$$
\text { Note: } \begin{aligned}
\tau & =\text { all trees } \\
\sim & =\text { all forests }
\end{aligned}
$$

\& every tree is a (connoted) (arest

$$
\Rightarrow \quad \tau \leq \sqrt{1}
$$

(a) How many spanning trees has the following graph? Shortly explain your results.

(b) Draw into the following graph a minimum spanning tree that you find by applying Kruskal's algorithm.

lead edge conneting 2 mast be coutaimedin spanning tree

$$
\Rightarrow 4.4 \cdot 4=64 \text { spot aces. }
$$

Problem 5 (Approximation Algorithms)
In the lecture, the following 2-approximation algorithm for the Vertex Cover Problem in general graphs was provided:

```
Greedy_VC2 \((G=(E, V))\)
\(C=\emptyset, E^{\prime}=E\)
while \(E^{\prime} \neq \emptyset\) do
    \(e=\{u, w\}\) some edge in \(E^{\prime}\)
    \(C=C \cup\{u, w\}\)
    Remove all edges incident to \(u\) and \(w\) from \(E^{\prime}\)
return \(C\)
```

Show that, in general, there is no constant ρ with $1 \leq \rho<2$ such that algorithm Greedy _VC2 is a ρ-approximation algorithm.
Give contrexample: eg. Kn,n

has VC C
Greedy-VC2 may retern edges:
while gives VC of size 2.|c|

$$
\Rightarrow \text { no } \rho, \begin{aligned}
& 1 \leq \rho<2 \\
& \text { exists! }
\end{aligned}
$$

A matching in an undirected graph G is a subset $M \subseteq E(G)$ of edges such that no two edges in M share a common vertex, i.e., $e \cap f=\emptyset$ for all distinct $e, f \in M$.
Our goal is to find a matching M of maximum size in a given undirected graph G.
(a) Define the independence system (E, \mathbb{F}) that describes this problem and also prove that (E, \mathbb{F}) is an independence system.
(b) Prove that a greedy algorithm will in general not optimally solve this problem by showing that (E, \mathbb{F}) is not a matroid.

$$
\begin{aligned}
& E:=E(G) \\
& F:=\left\{E^{\prime} \leq E: \quad E^{\prime} \text { is matching }\right\}
\end{aligned}
$$

Mn) $\phi \in \mathbb{F}$: Yes since no cages in ϕ share common vertex $\Rightarrow \phi$ is matching.

$$
E \in \mathbb{F} \Rightarrow \text { sine no two cedes in } E \text { share }
$$

$E^{\prime} \leqslant E \Rightarrow$ common velex \Rightarrow no two ed ss in El share common vertex since

$$
\begin{aligned}
& E^{\prime} \subseteq E \quad \Rightarrow E^{\prime} \text { is matching } \\
& \Rightarrow E^{\prime} \in \mathbb{F} .
\end{aligned}
$$

$$
M 2)
$$

$$
\begin{aligned}
\Rightarrow & =44 a b 3,\{c d\}\} \text { matching } \\
E^{\prime} & =4\{6 c\}\} \text { matching. }
\end{aligned}
$$

$$
\left|E^{\prime}\right| c|E| \text { but } \frac{a b c c}{b c}-\frac{c}{a} \text { not ding }
$$

\Rightarrow exchange property not
sdispied

$$
\Rightarrow(E, \#) \text { no mattoid. }
$$

Problem 7 (Dynamic Programming)
You are given an exam with questions numbered $1,2,3, \ldots, n$. Each question i is worth p_{i} points. You must answer the questions in order, but you may choose to skip some questions. The reason you might choose to do this is that even though you can solve any individual question i and obtain the entire p_{i} points, some questions are so frustrating that after solving them you will be unable to solve any of the following f_{i} questions.
By way of example, in the tabular below the values p_{i} and f_{i} are given for questions $1-5$. If you decide to solve the 2 nd question with $f_{2}=2$ and $p_{2}=2.5$, you will get all 2.5 points, but you are not able to solve questions 3 and 4 .
(a) Assume that the values p_{i} and f_{i} are as given in the following tabular.

question	1	2	3	4	5
p_{i}	1	2.5	3	1	3
f_{i}	0	2	1	1	0

Which questions should you choose? (no proof of correct solution needed here)
(b) Suppose that you are given the p_{i} and f_{i} values for all n questions as input. Give a dynamic programming solution to compute the maximum number of points one can achieve.
a) choose question 1, 3,5
b) $s(i)=$ opt value for questions i through t n.
\Rightarrow Question i is either zuclucled in the opt choice or not.

$$
\left.\begin{array}{rl}
\text { IF } i \text { included } \Rightarrow S(i) & \Rightarrow S i+S\left(i+f_{i}+1\right) \\
i \text { notincheldd } \Rightarrow & S(i)
\end{array}\right)
$$

(a) For an arbitrary integer $n \geq 1$, provide an alphabet Σ and construct a string $S=s_{1} \ldots s_{n} \in \Sigma^{n}$ such that the root of the resulting suffix tree has as children only leaves. Explain your result.
(b) Draw the suffix tree for the string $S=B A C B A A A \$$.

$$
s=s_{1} \cdots s_{n} \text { ot } s_{i} \neq s_{j} \forall i \neq j
$$

$a r)$

[Explain your results]

