
Answers and comments to exam on 2017-06-02 in
DA3018

1. (a) I choose to store the 12-digit identity number as a 12-element byte
array, which needs 12 bytes. There is no need to store the hyphen.
1 MB equals 106 bytes, so 106/1283 333 identity numbers fits in that
memory.

• It is OK to say that 1 MB equals 10242 = 220 bytes too, which
some prefer, but these days that is formally written as 1 MiB.

• One can consider storing parts of the identity number as integers
too, but I am guessing that is not convenient in general. If year,
month, day, and the last four digits were stored as four separate
integers, we would need 4 × 4 = 16 if “typical” integer type is
used.

• It is natural to think of using a string for representing a personal
identity number. We have not talked about string representation
in the course, and their representation varies between program-
ming languages, so you have some freedom in your assumptions.
In old languages like C, strings are variable length, encoding cha-
racters in the old ASCII standard in which each character is a
byte, and the string is terminated by a zero-byte. Thus, a string
of c characters take c + 1 bytes. In Java, a character is two or
four bytes because Java is supposed to handle strings from many
languages and uses the Unicode standard for character represen-
tation. Only the two-byte representation is needed for digits, so
12 digits would then need 24 bytes.

(b) A single-linked list is a list of nodes containing a data element and a
memory address (pointer/reference, depending on your programming
language) for the next node. At the last node the adress is 0 (“null” in
Java) to signify list termination. In Java, the list node would contain
a reference to the data element. In some languages one could store
the data ”natively” in the node.
I assume we work on a modern 64-bit computer, so the address part
of each node is 8 bytes. It is fine to assume a 32-bit computer too, in
which case you need 4 bytes.
Going with a Java-native estimate, the node contains two 8-byte
references for each id, so 16 bytes and an overhead of (8 + 8)/12 =
133 %.

2. (a) Python-inspired pseudocode:

def xor(A, B):
k = size(A)
X = new Array(k) of bytes
for i in [1, k]:

X[i] = (!A[i] && B[i]) || (A[i] && !B[i])
return X

(b) We will use a version of binary search in A, so we will keep track
of left and right of a region in A that we are zooming in on. The

1

left index is the first element of the region, and the right index is
the non-included region-ending element. If we end up with an empty
region, left == right, then we give up and return null.

def find(A, x):
return find(A, 0, size(A), x)

def find(A, left, right, x):
if left == right

return null
else:

mid = (left + right) // 2
L = A[mid][0]
R = A[mid][1]
if L <= x and x <= R:

return L, R
else:

if x < L:
return find(A, left, mid, x)

elif L < x:
return find(A, mid, right, x)

else:
return null

The algorithm will terminate in time O(lg n), because the region of
A that we consider will be split in two in each recursive call. If there
are n elements in A, then subarray will be reduced to a single element
in O(lg n) recursions.
The base case is trivially correct. If left and right are identical, then
there is not interval to find x in.
If it is not an empty region of A we are looking at, we start by consi-
dering the middle element. If x is in its interval, then it is returned.
Otherwise, we check what side of L that x is found on.
Suppose that there is an interval x ∈ [L̂, R̂] in A. If x < L, then
L̂ < L, so recursing on items left to mid is correct.
Consider the case L < x. If L̂ < L and x 6∈ [L,R] then R′ < R, so
it should hold that x ∈ [L,R] as well and we would have returned
[L,R] as a solution. If instead L < L̂, then it is correct to recurse on
mid to right in A.

(c) Here is pseudo code for a suggested solution.

def eval(expr):
operator, args = expr # Extract the parts from

the node with patterns matching
if operator == C: # Base case

return args # True/False
else:

operands = map(eval, args) # Call eval
recursively on each operand

if operator == AND:
return all(operands)

else:
return any(operands)

2

The function is correct, because we have a base case for constants:
if the expression is a constant, then the contant value is return. If
the operator is AND or OR, then all operands are evaluated first,
and in the case of an AND operator we make sure that all operands
evaluated to True using all, whereas for OR we test whether one
operand evaluated to True using any.
In this solution, I have used the all and any functions from Python,
that can be written as follows (in pseudo code):

def all(operands):
res = True
for x in operands:

if not x:
return False

return True

The all function loops through all operands. If one is False, then
the loop is escaped early with return False, otherwise the loop
will finish and True is returned.

def any(operands):
for x in operands:

if x:
return True

return False

The any function is similar, but returns early if True is found.
(d) Create a graph G = (V,E) with a vertex for each tile, and an edge

when two adjacent tiles have connecting roads. The map in the figure
of the exam has four vertices and three edges.
Let vs and ve be the vertices representing start and end tiles. We
want to find the shortest path p between vs and ve. The way we
define the graph, the route distance will equal the number of edges
in p, i.e., the length of the path. The shortest path from a start vertex
to every other vertex can be computed using breadth-first search.
Consider this algorithm:

def distance(G, start):
Initialize
for v in V(G):

v.visited = False

Start computing distances
Q = new Queue()
Q.enqueue(start)
start.visited = True
d[start] = 0 # Distance to itself is 0
while not Q.empty():

v = Q.dequeue()
for u in neighbors(v):

if not u.visited:
Q.enqueue(u)
u.visited = True
d[u] = d[v] + 1

3

The length of the shortest route is found by L[ve], after L = distance(G, vs).
In the algorithm, we will set the distance to vs’s neighbors to 1, and
then (using that the neighbors of vs has been put in the queue) set
the distance to the neighbors’ neighbors to 2, etc.
We can use induction to argue the correctness. As a base case, the
distance is trivially correct for vs (= start in the pseudo code).
As an inductive step, assume that (v, u) ∈ E and distances have been
correctly computed for v and all other vertices w with d(w) ≤ d[v].
There are two cases.

• If the shortest path from vs to u is through v, then the distance
to u is computed corrrectly, because u cannot have been put
in the queue and been visited before v, and the algorithm sets
d[u] = d[v] + 1.
• If there is a shorter path to u, not going through v, then there

must be another vertex w with (w, v) ∈ E, and w must have been
visited before v. However, this breaks the induction hypothesis,
since u would already have been marked as visited.

Because the algorithm is an adaption of BFS, adding only O(1) ope-
rations in each step of the algorithm, we stay within the O(|V |+ |E|)
time complexity guarantee of BFS. Our map have n tiles, so |V | = n,
and there are at most 4 roads from each tile, so |E| ≤ 4n/2 = 2n.
Therefore, the time complexity of our algorithm is O(n+4n) = O(n).

(e) Here is a possible problem formulation.
The grade partitioning problem:

• Input: An integer k for the number of forms (groups) to be
created, an integer m the maximum number of children in each
form, a set of children C, and for each child c ∈ C there is a
subset Fc of friends, Fc ⊂ C that c would like to be together
with the next year.

• Output: A partitioning P1, P2, . . . , Pk such that
⋃k

i=1 Pi = C,
and the number of pairs c1, c2 ∈ C such that c1 ∈ Pi and c2 ∈ Pj ,
i 6= j, is minimized.

For full points it should be clear what the input and the output is.

4

