Tentamensskrivning i Numerisk analys Teoriprov Den 27 oktober 2021

Argue carefully. You are allowed to use intermediate results in the preceding problem(s) which you were not able to solve.

There are 6 problems and 16 points (p) each except the last problem with 20p.

Grades: A: $p \ge 90$; B: $80 \le p \le 89$; C: $70 \le p \le 79$; D: $60 \le p \le 69$; E: $50 \le p \le 59$;

(1) Let
$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}$$
 and $b = \begin{pmatrix} 4 \\ 3 \\ 3 \\ 1 \end{pmatrix}$. In computation of the solution to the equation

Ax = b we know that b is perturbed by a vector δb with $\|\delta b\|_{\infty} \leq 0.01$.

- (a) Give an upper bound for $\|\delta x\|_{\infty}$, where δx is the associated perturbation in the computed solution.
- (b) Compute the condition number $\kappa_{\infty}(A)$ and compare it with the quotient between $\|\delta x\|/\|x\|$ och $\|\delta b\|/\|b\|$. Is the upper bound obtained by perturbation analysis tight?

Here is the inverse of
$$A$$
: $A^{-1} = \begin{pmatrix} 25 & -41 & 10 & -6 \\ -41 & 68 & -17 & 10 \\ 10 & -17 & 5 & -3 \\ -6 & 10 & -3 & 2 \end{pmatrix}$.

- (2) Assume that the function f(x) is three times continuously differentiable and α is a zero of f but not a zero of its derivative.
 - (a) Show that the iteration

$$x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}, n = 1, 2, ...$$

can be obtained by applying Newton's method to the function $g(x) = \frac{f(x)}{\sqrt{|f'(x)|}}$.

- (b) Argue that when the second derivative is very close to zero, the iteration is almost the same as the Newton's method iteration
- (c) Show that, if $\{x_n\}$, n = 0, 1, 2, ..., generated by the above iteration converges in a neighborhood of α , then the convergence is cubic.
- (3) Assume that the function f is sufficiently smooth. Let $x_i = x_0 + ih$ and h > 0
 - (a) Show that the formula

$$f(x_{\frac{1}{2}}) \approx \frac{1}{2}f(x_0) + \frac{1}{2}f(x_1) + \frac{1}{8}hf'(x_0) - \frac{1}{8}hf'(x_1)$$

is exact for all third degree polynomials.

- (b) Derive an asymptotical (approximation) error estimate.
- (c) Use the formula and error estimate to determine $f(x) = e^{1/2}$, $x_0 = 0, x_1 = 0.2$ using 6-decimals. (Note that $e^{0.2} = 1.221403$.)
- (4) (a) What is the characteristic polynomial of the matrix

$$F = \begin{pmatrix} 0 & 0 & \cdots & 0 & -\gamma_0 \\ 1 & 0 & \cdots & 0 & -\gamma_1 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -\gamma_{n-1} \end{pmatrix}?$$

(b) Let $p(\lambda) = a_n \lambda^n + \cdots + a_0$ och $\gamma_i = a_i/a_n$, i = 0, ..., n-1 and $a_n \neq 0$. Show how Gersgorin's Theorem can be applied to obtain the statement that all the zeros of $p(\lambda)$, $\lambda_1, ..., \lambda_n$ satisfy

$$\begin{aligned} &\lambda_{1}, ..., \lambda_{n} \text{ satisfy} \\ &\text{(i) } |\lambda_{i}| \leq \max \left\{ \left| \frac{a_{0}}{a_{n}} \right|, \max_{1 \leq k \leq n-1} \left(1 + \left| \frac{a_{k}}{a_{n}} \right| \right) \right\} \\ &\text{(ii) } |\lambda_{i}| \leq \max \left\{ 1, \sum_{k=0}^{n-1} \left| \frac{a_{k}}{a_{n}} \right| \right\}. \end{aligned}$$

- (c) Compare these two estimates for $p(\lambda) = \lambda^3 2\lambda^2 + \lambda 1$.
- (d) How would you solve polynomial equations, especially the polynomial has multiple zeros?
- (5) Consider the initial value problem $y'(x) = f(x, y(x)), y(x_0) = y_0.$
 - (a) Derive both implicit and explicit Euler's methods for solving of this problem. Name, for each of them, at least one advantage and disadvantage, respectively.
 - (b) Determine the region where the methods are absolutely stable for f(x,y) = ay, where a is a (possibly complex) constant.
 - (c) When is implicit Euler's method preferable? Why?

You have finished the exam if your homework point $p_h \ge 15$ (i.e. p=20). Do (6a) if $p_h \in [10, 15)$ (i.e. p=10); do (6a) and (6b) if $p_h \in [5, 10)$ (i.e. p=5). Note that all your p_h will be added.

- (6) (a) Let $y := \varphi(p,q) = -p + \sqrt{p^2 + q}$.
 - (i) Given the relative input errors ε_p ε_q , determine the relative output error of the result y.
 - (ii) Show that the problem is well conditioned for p > 0, q > 0.
 - (iii) Propose a numerically stable algorithm to compute y.
 - (b) Consider a symmetric $n \times n$ matrix A.
 - (i) Show that the eigenvalue problem is well-condtioned.
 - (ii) Assume further that A is symmetric positive definite tridiagonal. Propose an O(n) running time algorithm to compute the Cholesky factor.
 - (iii) The finite difference method applied to the two-point boundary value problem: $\frac{d^2y}{dx^2} = 12x^2, 0 \le x \le 1$ with y(0) = y(1) = 0, using $x_j = 0 + (j-1)h$, (j = 1, ..., J+1), results in a linear system of equations with the coefficient matrix A being symmetric tridiagonal. How do you solve this system of equations? Do you invert the matrix A? What types of linear solver is more suitable if J is very large? Write down at least one such numerical algorithm and the conditions under which the algorithm works.
 - (c) We can apply Newton-Raphson's method to find the positive solution of the equation $x^2 c = 0$ to approximate \sqrt{c} for c > 0. Write down the iteration x_n . Show that for all $0 < x_0 < \infty$, the sequence $\{x_n\}$ quadratically converges to \sqrt{c} .