
Solutions to Exam on October 27, Numerical analysis I, 2021

(1) Let A =


10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

 and b =


4

3

3

1

. In computation of the solution to the equation

Ax = b we know that b is perturbed by a vector δb with ‖δb‖∞ ≤ 0.01.

(a) Give an upper bound for ‖δx‖∞, where δx is the associated perturbation in the computed

solution.

(b) Compute the condition number κ∞(A) and compare it with the quotient between ‖δx‖/‖x‖
och ‖δb‖/‖b‖. Is the upper bound obtained by perturbation analysis tight?

Solution. (a) A straightforward computation gives ‖b‖∞ = 4, ‖A‖∞ = 33, ‖A−1‖∞ = 136.

Since A(x+ δx) = b+ δb, which is Aδx = δb, we have δx = A−1δb. Then

‖δx‖∞ ≤ ‖A−1‖∞‖δb‖∞ = 136 · 0.01 = 1.36.

(b) The solution x = (1,−1, 1,−1)T , and ‖x‖∞ = 1. The condition number κ∞(A) =

‖A‖∞‖A−1‖∞ = 33 · 136 = 4488. So

‖δx‖∞
‖x‖∞

= 1.36,
‖δb‖∞
‖b‖∞

=
0.01

4
= 0.0025 ⇒ ratio =

1.36

0.0025
= 544.

The perturbation analysis shows that this ratio is less than the condition number which is

much larger. So this upper bound is not tight.

(2) Assume that the function f(x) is three times continuously differentiable and α is a zero of f

but not a zero of its derivative.

(a) Show that the iteration

xn+1 = xn −
2f(xn)f ′(xn)

2[f ′(xn)]
2 − f(xn)f ′′(xn)

, n = 1, 2, ...

can be obtained by applying Newton’s method to the function g(x) = f(x)√
|f ′[x])|

.

(b) Argue that when the second derivative is very close to zero, the iteration is almost the

same as the Newton’s method iteration

(c) Show that, if {xn}, n = 0, 1, 2, ..., generated by the above iteration converges in a neigh-

borhood of α, then the convergence is cubic.

Solution. (a) Applying Newton’s method to g ives

xn+1 = xn −
g(xn)

g′(xn)

with

g′(x) =
2[f ′(x)]2 − f(x)f ′′(x)

2f ′(x)
√
|f ′(x)|

,

and the result follows.

(b) When the second derivative is very close to zero, then

xn+1 ≈ xn −
2f(xn)f ′(xn)

2[f ′(xn)]
2 = xn −

f ′(xn)

f(xn)



which is Newton’s method (c). The easiest way (but pretty tedious though) is to compute the

derivatives of the function

ϕ(x) = x− 2f(x)f ′(x)

2[f ′(x)]
2 − f(x)f ′′(x)

,

that is

ϕ′(x) =
f(x)2

(
3f ′′(x)2 − 2f (3)(x)f ′(x)

)
(f(x)f ′′(x)− 2f ′(x)2)

2

and

ϕ′′(x) =
h(x)

(2f ′(x)2 − f(x)f ′′(x))
3 ,

where

h(x) = 2f(x)
(
f ′(x)3

(
6f ′′(x)2 − 2f(x)f (4)(x)

)
+ 12f(x)f (3)(x)f ′(x)2f ′′(x)+

+f(x)f ′(x)
(
−12f ′′(x)3 + f(x)f (4)(x)f ′′(x)− 2f(x)f (3)(x)2

)
−4f (3)(x)f ′(x)4 + f(x)2f (3)(x)f ′′(x)2

)
.

Clearly ϕ′(α) = ϕ′′(α) = 0. So the convergence is at least cubic.

(3) Assume that the function f is sufficiently smooth. Let xi = x0 + ih and h > 0

(a) Show that the formula

f(x 1
2
) ≈ 1

2
f(x0) +

1

2
f(x1) +

1

8
hf ′(x0)− 1

8
hf ′(x1)

is exact for all third degree polynomials.

(b) Derive an asymptotical (approximation) error estimate.

(c) Use the formula and error estimate to determine f(x) = e1/2, x0 = 0, x1 = 0.2 using

6-decimals. (Note that e0.2 = 1.221403.)

Solution See the textbook on pages 265-266.

(4) (a) What is the characteristic polynomial of the matrix

F =


0 0 · · · 0 −γ0
1 0 · · · 0 −γ1
...

... · · ·
...

...

0 0 · · · 1 −γn−1

?

(b) Let p(λ) = anλ
n + · · · + a0 och γi = ai/an, i = 0, ..., n − 1 and an 6= 0. Show how

Gersgorin’s Theorem can be applied to obtain the statement that all the zeros of p(λ),

λ1, ..., λn satisfy

(i) |λi| ≤ max

{∣∣∣∣ a0an
∣∣∣∣ , max

1≤k≤n−1

(
1 +

∣∣∣∣akan
∣∣∣∣)}

(ii) |λi| ≤ max

{
1,

n−1∑
k=0

∣∣∣∣akan
∣∣∣∣
}

.

(c) Compare these two estimates for p(λ) = λ3 − 2λ2 + λ− 1.

(d) How would you solve polynomial equations, especially the polynomial has multiple zeros?

Solution. (a) Using induction we can show that the characteristic polynomial of the matrix

F is

χ
F

(s) = sn + γn−1s
n−1 + · · ·+ γ1s+ γ0



(b) The Gerschgoring’s discs for F is

D0 = {z : |z| ≤ |γ0|}

Di = {z : |z| ≤ 1 + |γi]}, i = 1, ..., n− 2,

Dn−1 = {z : |z + γn−1| ≤ 1}

Together with revered triangle inequality (for the last disc), we have that all eigenvalues of F ,

λ1, ..., λn, satisfy

|λi| ≤ max

{
|γ0|, max

1≤k≤n−1
(1 + |γk|)

}
, i = 1, ..., n

Now the polynomial p has the same zeros as the eigenvalues of F and γi = ai/an we get the

estimate in (i).

Since the eigenvalues of F and the eigenvalues of F> are the same, applying the Gercsh-

goring Theorem on F> yields the following discs

{z : |z| ≤ 1}and {z : |z + γn−1| ≤
n−2∑
k=0

|γk|}.

Using the same argument as in (i) we have

|λi| ≤

{
1,

n−1∑
k=0

|γk|

}
, i = 0, 1, ..., n.

(c) By (b) (i) |λi| ≤ 3 (ii) |λi| ≤ 4. (i) gives better estimate.

(d) We convert the problem of finding zeros of a polynomial to the eigenvalues of the companion

matrix such as F above using for example shifter QR-algorithm. There are more efficient QR-

algorithms for the companion matrix F since it is a rank one update of an orthogonal matrix.

(5) Consider the initial value problem y′(x) = f(x, y(x)), y(x0) = y0.

(a) Derive both implicit and explicit Euler’s methods for solving of this problem. Name, for

each of them, at least one advantage and disadvantage, respectively.

(b) Determine the region where the methods are absolutely stable for f(x, y) = ay, where a

is a (possibly complex) constant.

(c) When is implicit Euler’s method preferable? Why?

Solution. See e.g. the textbook pages 338, 350 for derivation of the Euler’s method.

Euler’s explicit method: yn+1 = (1 + ha)yn. So yn → 0 if and only if |1 + h| < 1. So the

absolutely stable region is a unit disc centered at (−1, 0) on the complex plane, which is a

subset of the left half plane, where z = ha.

Euler’s implict method: yn−1 = (1 − ah)−1. So yn → 0 if and only if |1 − ah| > 1. The

absolutely stable region is the complex plane excluding the unit disc (including the circle)

centered at (1, 0). This include the whole left half-plane.

The explicit method is cheaper but the step size is limited (which is not suitable for stiff

problem). The implicit method is more expansive since it needs solve (in general) a nonlinear

equation at each step. But it is more suitable for some problems such as stiff problems

You have finished the exam if your homework point ph ≥ 15 (i.e. p=20). Do (6a) if ph ∈ [10, 15)

(i.e. p=10); do (6a) and (6b) if ph ∈ [5, 10) (i.e. p=5). Note that all your ph will be added.

(6) (a) Let y := ϕ(p, q) = −p+
√
p2 + q.



(i) Given the relative input errors εp εq, determine the relative output error of the

result y.

(ii) Show that the problem is well conditioned for p > 0, q > 0.

(iii) Propose a numerically stable algorithm to compute y.

(b) Consider a symmetric n× n matrix A.

(i) Show that the eigenvalue problem is well-condtioned.

(ii) Assume further that A is symmetric positive definite tridiagonal. Propose an O(n)

running time algorithm to compute the Cholesky factor.

(iii) The finite difference method applied to the two-point boundary value problem:
d2y
dx2 = 12x2, 0 ≤ x ≤ 1 with y(0) = y(1) = 0, using xj = 0 + (j − 1)h, (j =

1, ..., J + 1), results in a linear system of equations with the coefficient matrix A

being symmetric tridiagonal. How do you solve this system of equations? Do you

invert the matrix A? What types of linear solver is more suitable if J is very large?

Write down at least one such numerical algorithm and the conditions under which

the algorithm works.

(c) We can apply Newton-Raphson’s method to find the positive solution of the equation

x2 − c = 0 to approximate
√
c for c > 0. Write down the iteration xn. Show that for all

0 < x0 <∞, the sequence {xn} quadratically converges to
√
c.

Solution. (a)

∂ϕ

∂p
= − y√

p2 + q
,

∂ϕ

∂q
=

1

2
√
p2 + q

Error propagation theorem (Theorem 2.2.3) yilds

∆y ≈ ∂ϕ

∂p
∆x+

∂ϕ

∂q
∆q = − y√

p2 + q
∆p+

1

2
√
p2 + q

∆q

which gives

ry ≈ −
p√
p2 + q

rp +
p+

√
p2 + q

2
√
p2 + q

rq

Note that ∣∣∣∣∣ p√
p2 + q

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣p+
√
p2 + q

2
√
p2 + q

∣∣∣∣∣ ≤ 1 för q > 0.

So y is well-conditioned if p > 0, q > 0 ochill-conditioned if q ≈ −p2.

An numerically stable algorithm can be

s := p2

t := s+ q

u :=
√
t

v := p+ u

y := q/v

Note that we don’t have subtraction in the computation and the mappnig

ψ : u→ p+ u→ q

p+ u
= ψ(u)



has the relative error (for y is

1

y

∂ψ

∂u
·∆u =

−q
y(p+ u)2

·∆u = −
√
p2 + q

p+
√
p2 + q︸ ︷︷ ︸

k

ε = kε

By inspection the amplifier factor k satisfies |k| < 1. So it is numerically stable.

(b) (i) See the textbook page 209.

(ii) Let a1, ...an be the diagonal elements of A and b2, ..., bn be the off-diagonal elements

under the diagonal. Let now the matrix G be the Cholesky factor, i.e. A = GGT with the

diagonal element g1, ..., gn and off-diagonal element under the diagonal h2, ..., hn. We can

prove that gi =
√
ai − h2i and hi = bi/gi−1 for i = i : n. Set h0 = 0. This is an = (n)

algorithm.

(iii) The matrix obtained from the finite difference matrix is a tridiagonal matrix, but not

positive definite. When the number of grid point is large a direct method will break down due

to computer capacity. In this case an iterative method is preferred. Such algorithms are in the

form x(k+1) = Bx(k) +c (to solve Ax = b). Some examples are Jacobi method (B = −(L+U),

Gauss-Seidel metod (B = −(I +L)−1U), (see the text book page 191 for details, or Problems

4 and 6 in the textbook page 196 and page196 respectively. The condition for its convergence

is that the spectral radius of B is less than 1.

(c) The iteration is

xn+1 =
1

2

(
xn +

c

xn

)
.

By some algebraic manipulation we have

xn+1 −
√
c =

1

2xn
(xn −

√
c)2.

Now for any x0 > 0, the sequence is positive. Hence xn ≥
√
c for all n = 0, 1, .... which yields

xn − xn+1 = xn −
1

2

(
xn +

c

xn

)
=
x2n − c

2xn
≥ 0

i.e. x1 ≥ x2 ≥ · · · ≥
√
c. This means the sequence is positive, bounded and decreasing. SO it

has a unique limit a. Solving a = 1
2

(
a+ c

a

)
gives a =

√
c.


