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Instructions: Textbooks, notes and calculators are not allowed. You may quote results that you learned
during the class. When you do, state precisely the result that you are using. Unless explicitly instructed
otherwise, be sure to justify your answers, and show clearly all steps of your solutions. In problems
with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not
solve the earlier parts

1. (a) [2 pts] True or false: if a permutation σ has order 2 then it is an odd permutation. Prove or
give a counterexample.

Solution: False. For example, the permutation (12)(34) has order 2, but it is an even per-
mutation.

(b) [2 pts] How many permutations σ ∈ S8 are there, that satisfy σ(1234)(567)σ−1 = (3572)(486)?
Note: you are not required to list them, just to say how many there are, with a brief and clear
justification.

Solution: 12. Any two such permutations differ by an element of the centralizer of (1234)(567),
so there are as many such permutations as there are elements in the centralizer. The centralizer
is isomorphic to C4 × C3 and has 12 elements.

2. Let G be a group, and H ⊂ G a subgroup. Define the core of H as follows

CoreG(H) =
⋂
g∈G

gHg−1.

(a) [1 pt] True or false: CoreG(H) is a normal subgroup of G. No justification required.

Solution: True.

(b) [2 pts] Describe the core of a 2-Sylow subgroup of S4.

Solution: The core is the group consisting of the following 4 elements:

V4 = {e, (12)(34), (13)(24), (14)(23)}.

We learned in class that V4 is a normal subgroup of S4. It is obviously contained in at least one
2-Sylow subgroup, therefore it is contained in their intersection. Since the 2-Sylow subgroup
of S4 is not normal, the intersection of the 2-Sylow subgroups is a proper subgroup of each
2-Sylow subgroup. The subgroup V4 has index 2 in the Sylow subgroups, so it is a maximal
proper subgroup of the Sylow subgroups, therefore it must be the entire intersection.

(c) [2 pts] Suppose that H has index n in G. Prove that the quotient group G/CoreG(H) is
isomorphic to a subgroup of Sn.

Solution: The action of G on G/H induces a homomorphism G → Sn. The core of H is
precisely the kernel of this homomorphism. It follows that this homomorphism induces an
injective homomorphism G/CoreG(H) ↪→ Sn.

3. (a) [2 pts] Let P and Q be two Sylow subgroups of G, for distinct primes p and q. Suppose that
np = nq = 1 (where np denotes, as usual, the number of p-Sylow subgroups of G). Prove that
for every x ∈ P and y ∈ Q, xy = yx.
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Solution: Consider the commutator xyx−1y−1. On one hand, it can be written as (xyx−1)y−1.
Since nq = 1, Q is normal, which means that xyx−1 ∈ Q, and therefore (xyx−1)y−1 ∈ Q. A
similar argument shows that xyx−1y−1 ∈ P . So xyx−1y−1 ∈ P ∩ Q. But P ∩ Q = {e}, so
xyx−1y−1 = e, which means that xy = yx.

(b) [2 pts] Suppose G has pmqn elements, where p and q are distinct primes. Let P and Q be a
p-Sylow and q-Sylow subgroup of G. Suppose that P is contained in the center of G. Prove
that G is isomorphic to P ×Q.

Solution: The assumption clearly implies that P is normal in G. We claim that Q is normal
too. Since P ∩Q = {e}, PQ has as many elements as G, and therefore G = PQ. This means
that every element of G can be written as pq for some p ∈ P and q ∈ Q. This means that for
every element pq ∈ G and every x ∈ Q,

(pq)x(pq)−1 = pqxq−1p−1 = qxq−1 ∈ Q

Which means that Q is normal in G.

Now we just need the standard fact that if all the Sylow subgroups of a group are normal,
then the group is isomorphic to the product of its Sylow subgroups. In our case we can prove
it by considering the canonical homomorphism

G→ G/Q×G/P.

The kernel of this homomorphism isQ∩P = {e}. So this homomorphism is injective. Counting
elements tells us that it is an isomorphism.

Finally, consider the composite homomorphism

P ×Q→ G×G→ G/Q×G/P.

Again, the kernel of this homomorphism is (P ∩ Q) × (Q ∩ P ), which is trivial. So the
homomorphism is injective, and counting elements tells us that it is an isomorphism. So
G ∼= P ×Q.

4. [5 pts] Prove that a group of order 132 = 3 · 4 · 11 is not simple.

Solution: Suppose G is a group with 132 elements. By Sylow theorems, n11 = 1 or 12. If n11 = 1
then G has a normal 11-Sylow subgroup and is not simple. Suppose n11 = 12. Then G has 120
elements of order 11.

Next, let us analyze n3. We know that n3|44, which implies that n3 ∈ {1, 2, 4, 11, 22, 44}. We also
know that n3 ≡ 1(mod 3), which leaves the possibilities that n3 = 1, 4, or 22. If n3 = 22, then
G has 44 elements of order 3, which together with 120 elements of order 11 gives more than 132
elements. So n3 6= 22. If n3 = 1 then G has a normal 3-Sylow subgroup and is not simple. The
remaining possibility is that n3 = 4. In this case G has 8 elements of order 3, so altogether it must
have 128 elements whose order is either 11 or 3.

If n2 > 1 then G has at least 6 elements whose order is a power of 2 (this includes the identity
element), so altogether G has at least 134 elements, which is a contradiction. So n2 = 1, and G is
not simple.
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5. Let R, S be integral domains (i.e., commutative rings with a 1 6= 0, and no zero divisors). Let
f : R→ S be a ring homomorphism. You may use without proof the fact that if I is an ideal of S,
then f−1(I) is an ideal of R.

(a) [2 pts] Show that either f(1) = 1, or f(r) = 0 for all r ∈ R.

Solution: We know that f(1) = f(12) = f(1)2. This means that f(1)(f(1) − 1) = 0 Since
R is an integral domain, either f(1) = 0 or f(1) = 1. So if f(1) 6= 1 then for all r ∈ R,
f(r) = f(r · 1) = f(r) · f(1) = 0.

Assume that f(1) = 1 in parts (b)-(d) below.

(b) [2 pts] Suppose I is a principal ideal of S. Does it follow that f−1(I) is a principal ideal of
R? Prove or give a counterexample.

Solution: No. For example, consider the homomorphism Z[x] → Z that sends a polynomial
to its constant coefficient. The idean 2Z ∈ Z is prinicpal, but its preimage is the ideal (2, x),
which is not principal.

(c) [2 pts] Suppose I is a prime ideal of S. Does it follow that f−1(I) is a prime ideal of R? Prove
or give a counterexample.

Solution: Yes. Suppose xy ∈ f−1(I). Then f(xy) ∈ I, which means that f(x)f(y) ∈ I. Since
I is a prime ideal, either f(x) or f(y) is an element of I. But then either x or y is an element
of f−1(I).

Furthermore, if one requires prime ideals to be proper, it also holds that if I is proper, then
1S /∈ I. Since f is not zero, f(1R) = 1S, so 1R /∈ f−1(I), and f−1(I) is a proper ideal.

(d) [2 pts] Suppose that I is a maximal ideal of S. Does it follow that f−1(I) is a maximal ideal
of R? Prove or give a counterexample.

Solution: No. Consider the inclusion homomorphism Z ↪→ Q. The zero ideal is maximal in
Q, but its preimage is not maximal in Z.

Note: if one assumes that f is surjective then the answer is yes.

6. [4 pts] Let p(x) = x3 + ax2 + bx + 1, where a, b ∈ Z. Let (p) be the ideal generated by p in Q[x].
Prove that one, and only one, of the following possibilities must hold

1. Q[x]/(p) is a field

2. a = b or a+ b = −2.

Solution: We know that one and only one of the following holds: (a) p is irreducible in Q[x], (b) p
is reducible in Q[x]. The ring Q[x]/(p) is a field if and only if p is irreducible. So we have to prove
that p is reducible if and only if a = b or a+ b = −2.

By Gauss’s lemma and its consequences, since p is a monic polynomial with integer coefficients,
p is reducible over Q if and only if it is reducible over Z. p is reducible over Z if and only if it
equals the product of a linear monic polynomial and a quadratic monic polynomial with integer
coefficients. In other words, if and only if there exist integers s, t, r such that

x3 + ax2 + bx+ 1 = (x2 + rx+ s)(x+ t).
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This holds if and only if we have equalities

a = r + s

b = rt+ s

1 = st.

Since r, s, and t are integers, the equality st = 1 implies that either s = t = 1 or s = t = −1. In
the first case a = b = r + 1, in the second case a = r − 1 and b = −r − 1.

To summarize, we have shown that p is reducible over Q if and only if either there exists an integer
r such that a = b = r + 1 or there exists an integer r such that a = r − 1 and b = −r − 1. Clearly
the last condition is equivalent to a = b or a+ b = −2.


