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1. Determine which of the following statements are true, and which are false. Explain your reasoning.

(a) A function f : R → R that is continuous at all but countable many points, and is bounded at
every point, is continuous everywhere on R.

(b) If a sequence of real-valued functions {fn} converges uniformly on R to a continuous function f ,
then all but at most finitely many of the fn are continuous on R.

(c) If f is bounded on R and has f ′(x) = 0 for −1 ≤ x ≤ 2 then f is constant on [0, 1].

(d) If f is continuous and the range of f contains finitely many distinct points, then f is constant.

(e) The set of real-valued continuous functions on [0, 1] equipped with the function

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx

is an example of a complete metric space.

2. A real-valued function f on the interval [0, 1] is said to belong to the class C(α), α > 0, if there exists
a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y|α for any x, y ∈ R.

(a) Give an example of a uniformly continuous function on [0, 1] that does not belong to any C(α).
(b) If f belongs to C(1), does this imply that f is differentiable at every point of [0, 1]?

(c) Give a complete description of the functions of class C( 32 ) on [0, 1].

3. Compute the Riemann-Stieltjes integral ∫ 1

0

fdα

where f(x) = x2 and

α(x) =

{
1 + x2, 0 ≤ x ≤ 1

2
3
2 + x2, 1

2 < x ≤ 1

4. Let f be real-valued and continuous on [0, 1]. Suppose that, for each n = 0, 1, 2, . . .,∫ 1

0

f(x)xndx = 0.

Prove that f(x) = 0 for all x ∈ [0, 1]. (Hint: start by looking at f2. )
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