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1. Determine which of the following statements are true, and which are false. Explain your reasoning.

(a) A function f : R → R that is continuous at all but countably many points, and is bounded at
every point, is continuous everywhere on R.

(b) If a sequence of real-valued functions {fn} converges uniformly on R to a continuous function f ,
then all but at most finitely many of the fn are continuous on R.

(c) If f is bounded on R and has f ′(x) = 0 for −1 ≤ x ≤ 2 then f is constant on [0, 1].

(d) If f is continuous and the range of f contains finitely many distinct points, then f is constant.

(e) The set of real-valued continuous functions on [0, 1] equipped with the function

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx

is an example of a complete metric space.

Sketch solutions:

(a) The statement is false. Consider, for instance, the function that is equal to 1 on [2k, 2k + 1], k an
integer, and equal to 0 on [2k + 1, 2k]. This function is bounded, is continuous except at the integers
which form a countable set, but is not a continuous function overall.

(b) The statement is false. Consider the sequence fn =

{
1
n , x ∈ Q
0, x ∈ R \Q . Then fn converges uniformly

to the zero function but no fn is a continuous function.

(c) This statement is true. One way of seeing this is to apply the mean value theorem.

(d) This problem intended to specify that f is a function on the real line. In that case the intermediate
value theorem forces f to be constant.

(e) This statement is false. To see this, consider the sequence of continuous functions fn defined by
setting fn(x) = 0 for 0 ≤ x ≤ 1

2 and fn(x) = 1 for 1
2 + 1

n ≤ x ≤ 1 and interpolating linearly on the
interval

[
1
2 ,

1
2 + 1

n

]
. Then d(fn, fm)→ 0 with n,m but the limit function f is discontinuous at x = 1

2 .

2. A real-valued function f on the interval [0, 1] is said to belong to the class C(α), α > 0, if there exists
a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y|α for any x, y ∈ R.

(a) Give an example of a uniformly continuous function on [0, 1] that does not belong to any C(α).
(b) If f belongs to C(1), does this imply that f is differentiable at every point of [0, 1]?

(c) Give a complete description of the functions of class C( 32 ) on [0, 1].
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Sketch solutions:

(a) The function

f(x) =

{
0, x = 0
1

log( x
2 )
, 0 < x ≤ 1

furnishes an example. Since limx→0 f(x) = 0, the function f is continuous, and since [0, 1] is compact
f is uniformly continuous.

However, if x ∈ [0, 1],
|f(x)− f(0)|
|x|α

=
− 1

log(x/2)

xα

which implies that, for any α > 0

lim
x→0

1

−xα log(x/2)
= lim
t→−∞

−2αe−αt

t
=∞.

This shows that there does not exist any α > 0 such that |f(x)| ≤ C|x|α near 0 for some constant
C > 0.

(b) It does not follow that f is differentiable. Consider for instance the function f(x) = |x − 1
2 |. This

function is clearly not differentiable at x = 1
2 but

|f(x)− f(y)| = ||x− 1

2
| − |y − 1

2
|| ≤ |x− y|

by the reverse triangle inequality.

(c) The class C( 32 ) consists of the constant functions on [0, 1]. If f is constant, then f(x) − f(y) = 0
for x, y ∈ [0, 1] and hence f belongs to C( 32 ). Conversely, suppose that f ∈ C( 32 ). Then, for x ∈ (0, 1)
and h small enough, we have, for some C > 0,

|f(x+ h)− f(x)|
|h|

≤ C |h|
3
2

|h|
= C|h| 12 ,

and the quantity on the right tends to zero with h. This in turn implies f ′(x) = 0 and by a theorem
in Rudin, f is constant.

3. Compute the Riemann-Stieltjes integral ∫ 1

0

fdα

where f(x) = x2 and

α(x) =

{
1 + x2, 0 ≤ x ≤ 1

2
3
2 + x2, 1

2 < x ≤ 1

Sketch solution: It is important to note that α has a jump at x = 1
2 . For this reason, we cannot apply

the formula
∫ 1

0
fdα =

∫ 1

0
fα′dx directly. However, we can decompose α as α = α1 +α2 where α1 = x2

and
α2(x) =

{
1, 0 ≤ x ≤ 1

2
3
2 ,

1
2 < x ≤ 1

.

Then
∫
fdα =

∫
fdα1 +

∫
fdα2 and we compute the integrals separately.

Since α1 is continuously differentiable,∫ 1

0

f(x)dα1(x) =

∫ 1

0

x2 · 2xdx =

∫ 1

0

2x3dx =

[
1

2
x4
]1
0

=
1

2
.
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Since α2 is a step function, we obtain as in Rudin’s book that∫ 1

0

fdα2 =
1

2
· 1
22

=
1

8
.

Hence
∫ 1

0
fdα = 5

8 .

4. Let f be real-valued and continuous on [0, 1]. Suppose that, for each n = 0, 1, 2, . . .,∫ 1

0

f(x)xndx = 0.

Prove that f(x) = 0 for all x ∈ [0, 1]. (Hint: start by looking at f2. )

Sketch solution: The assumption that
∫ 1

0
fxndx = 0 for all n ∈ N implies that

∫ 1

0
f(x)P (x)dx = 0 for

any polynomial P with real coefficients. Using this, along with linearity of the integral, we obtain∫ 1

0

(f(x))2dx =

∫ 1

0

f(x)2dx−
∫ 1

0

f(x)P (x)dx =

∫ 1

0

f(x) · (f(x)− P (x))dx (1)

for any polynomial P .

Now let ε > 0 be given. Since f is a continuous function on [0, 1] the Weierstrass theorem implies that
there exists a polynomial P such that supx∈[0,1] |f(x)− P (x)| < ε. Again using properties of integrals,
we deduce from (1) that ∫ 1

0

f2dx ≤ ε
∫ 1

0

fdx.

Note that
∫ 1

0
fdx is finite by the assumption that f is continuous. Thus, given any ε > 0 we obtain∫ 1

0
f2dx ≤ ε by choosing ε > 0 small enough. This in turn implies

∫ 1

0
f2dx = 0. We now deduce

f(x) = 0 as desired. If this was not the case, we would have f(x0) 6= 0 for some x0 ∈ [0, 1], and by
continuity, we would have f(x)2 > 0 on some interval [a, b] ⊂ [0, 1]. Since f2 is non-negative for any
real function, we arrive at a contradiction as this would imply

∫ 1

0
f2dx ≥

∫ b
a
f2dx > 0.
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