Solutions exam Probability III

November, 2021

Problem 1

Let (Q, F,P) be a probability space, and let X be a random variable being
defined on this space. Let A be a sub-o-field of F, generated by a finite
partition P = {A1, Ag, -+ , Ap}.

(a) Provide the definition of an F-measurable random variable. (Just using
Proposition 3 of the cheat-sheet is not enough). (4p)

Solution: Given a sample space (€2, F), a F-measurable random variable is
a function X :  — R with the property that the set {w € Q: X (w) € B}
belongs to F for each Borel set B € B, where B is the Borel o-algebra on R.

For part (b) and (c), let X = E[X|A].
(b) Show that if Y is an .A-measurable random variable, then
E[(X — X)Y] =0. (4p)

Solution: By Thm 4.8 (iii) from A and D:

~

E[(X — X)Y] = E[XY] — E[XY] = E[E[XY |A]] — E[XY]
= E[E[X|A]Y] — E[XY]
where we have used that Yis A measurable and therefore can be taken out

of the conditional expectation. The final line can be rewritten as E[XY] —
E[XY], which obviously is equal to 0.

(c) Show that if Z is an A-measurable random variable, then
E[(X - 2)’] 2 E[(X - X)?]. (4p)

Solution:
E[(X—-2)"] = E[([X - X]+[X-2))’] = E[[X - X]*]+2E[([X - X][X - Z])]+E[[ X - Z]*).

We note that X — Z is A measurable and therefore by part b) the second
summand is 0. The third summand is at least 0 because it is the expectation
of a square. and the statement in the question follows.



Problem 2 or A > 0, let X, be Poisson distributed with parameter A\. That
is

DL
H@

and P(X\ =k)=0for k¢ {0,1,2,---}.
a) Compute 1) (t) = E[e!XA], for + € R. That is, compute the moment

]P)(X)\:k): fOI'kE{O,]-;2a"'}

generating function of X7 (2p)
Solution:
oo oo
)\ _ )\et k _ t_ t_
Dn(t) = E[eX] ZIT Aot — Z( k:!) oA A A A1)
k=0 k=0

Define Yy = (X — A)/VA.
b) Compute )(t) = E[e™], for t € R. That is, compute the moment
generating function of Y7 (2p)

Solution: Note Yy = Xy/vA — v\ and by standard properties of moment
generating functions we have

Da(t) = ¢>\<t/\&)€_ﬁt = A~V

Let Z be a standard normal distributed random variable. That is Z has
density

1
fz(z) = e 212 for z e R.

V2T
c) Compute 9z(t) = E[e!?], for t € R. That is, compute the moment
generating function of Z7 (4p)
Solution:

1 2 1 2 &0 2 2
Q;Z)Z(t) _ E[etZ] :/ = 7 /261}de — = ot /2/ e—(z—t) /2dZ — et /2
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In part d) you may use without proof that the characteristic function of Y
is given by v, (it) and the characteristic function of Z is given by vz (it),

where i = /—1.

d) Show that Y converges in distribution to Z as A — oo. (4p)

Solution: From part b) and the hint it follows that the characteristic func-

A(eft/ VA1)

tion of Y) is given by e Vit The exponent can be Taylor expended

as

—t2/2 —it? /(6VX) + O(1/N).

So the characteristic function of Y) converges to e /2 as X — oo, which
by part ¢) and the hint is the characteristic function of a standard normal
distribution. And the result follows because convergence of characteristic
functions implies convergence in distribution.



Problem 3

Let X1, X5, - be a sequence of random variables and X another random
variable, all defined on (Q, F,P).

a) Let g : [0,00) — [0,00) be a strictly increasing function. Show that

Elg(1X])]

P(|X|>e€) < O

(3p)
Solution: Let A = {w,|X(w)| > €}. For all x > 0 and ¢ > 0, we have
g(x) > Wg(z) > g(e))g(e). Further x > € if and only if g(z) > g(e) because
g(+) is strictly increasing. Therefore,

E(g(1X])) = E(g(e)i(A)) = g(e)P(A) = g(e)P(|X| > ),

and the statement follows.

b) Let g(z) = x/(1+z). Show that X, 5 0ifand only if g(|X,|) converges
in expectation to 0. (6p)
Solution: Assume that g(|Xy|) 4 0, i.e. assume that E[g(]X,|)] — 0. Note
that g(x) =1 —1/(1 + x) is strictly increasing in x. Then for e > 0 by part
a):

Elg([Xa)] 1+

P(| X, >€) < o) c

Elg(IXn])] = 0,

1
by g(|Xy,|) = 0.

Then assume that X, — 0, i.e. P(|Xy| > €) — 0 for all € > 0. Note that
g(z) € [0,1) and is increasing for = € [0,00). So, for all € > 0

E (9(1Xn[)) = E (9(|Xn Xy < €)) + E (9(| Xn )UXp > €))

<E <1 i (X, < e)> +E (1 x (X, > ¢)) = iP(|Xn| < )+P(|Xn| > €)

€ €
1-P(X P(] X, —
(L= B(Xa| > ) + P(Xa| > ) > T

as n — oo by X, % 0. Since ¢ can be chosen arbitrary small, E (¢(|X,|)) =
E (lg(|Xn|) —0]) — 0 and the statement of the question follows.

¢) Show that if X, converges in expectation to X then X, converges in
probability to X. (3p)

Solution: Using part a) with g(z) = z gives that for e > 0
P(| X, — X| >¢) <E[|X, — X|]/e = 0

by the convergence in expectation of X, to X.



Problem 4
Consider a supercritical Galton-Watson Branching Process {Zy, Z1, Z2,- - }
with Zp = 1. That is, let {X;}i=0,1,2,j=1,2,.. be independent and iden-

s Ly&y

tically distributed random variables Wlth the same distribution as the non-
negative integer valued random variable X. Define

k
Zo=1 and Zk+1:Zij for k > 0.

Assume P(X > 1) =1, E[X] =m > 1 and Var[X] = 0% < o0.
a) Show that for all n > 1
E[Z,)=m" and  E[(Z,)?] = m*E[(Z,_1)?*] + m" o2

Deduce from this (e.g. by induction) that for n > 1,

E((Z0)?) = m? +a2zmn b0 = g 2 L (ap)
Solution: First,
E[Zn] = E[E[Zn|Zn1]] = mE[Zy 1] = - - = m"Zy = m".
Then
E[(Zn)?] = E[E[(Zn)*| Zn-1]] Z Xn-1,) Z X 14| Zn1]]
Zn 1 Zn-1=1 Zn_
:E[ E[(XYL—LJ) ’Zn 1 +2E Z Z Xn— 1,3 n— 1k‘Zn 1]]

Jj=1 k=j+1
E[Z, ](0 +m ) +E[Z-1(Zp-1 — 1)]m =m" o2 +m E[(Zn_1)2].

Now assume that E[(Z,)?] = m?>® + 023 7_, m" *m2*=1) then we finish
the proof by noting that E[(Z1)?] = m? + 02 = m?! + o2m!=1m=1 ang

m—1

E[(Zp41)%] = m"o?+m?E[(Z,)%] = m"o*+m? (mZn + o2 Z m"ka(k1)>

n n+1
_ mn02+m2(n+1)+o_2 Z mn—ka(k) _ mn02+m2(n+1)+0_2 i mn+1—€m2(€—1)
k=1 (=2
n+1
— p2(nt1) | 2 Z 1= 2(0-1).
/=1



b) Show that W,, = m~"Z, converges almost surely to a random variable
W as n — oo. (4p)
Solution:

E[Wn—i-l’ZOv Zy, e Zn] = mi(n+1)E[Zn+1‘Zn] = mi(nJrl)mZn =m "Zy, = W,.
Also E[|W,|] = E[W,] = E[Wy] = 1 < co. So, Wy, Wy, -+ is a martingale,
with respect to filtration generated by Zy, Z1, - - -. Furthermore, we have

E[(W,)] = m 2 E[(Z0)] = 1+ 0° "

—1+0%(m? —m)™' < oo,

Here we have used that m > 1. The Martingale convergence theorem now
gives the statement of the question.

¢) Show that as n — oo,

Z?:l Zi = E?:l(Zz - mZifl) a;s>. 0.

S8 Z >0 7

(4p)
Hint: Note that by P(X > 1) =1 we have P(Z,41 > Z,) =1 for all n € N
and therefore > | Z; — oo as n — oo.
Solution: Use Theorem 21 of cheat sheet, with

n

Sp = Z(ZZ —mZi—1) and f(x) = max(1, z).
i=1

First observe that S,, is a martingale because E[Z; —mZ;_;] = 0 for all i and
then using that E[(Z; — mZ;_1)(Z; — mZj_1)] = 0 for ¢ # j and therefore
that (Z; —mZ;_1) and (Z; — mZ;_1) are uncorrelated we obtain for all n

n

E((Sn)?) =) E[(Zi —mZi1)*] = 0°E[Zi 1] < 0.
=1 =1

Note that
(S)n =D E((Sk — Se—1)*|Fo-1) = Y _Var(Z|Zp—1) = 0* Y Zp_—y — 0
k=1 k=1 k=1
and thus we have that
> i1 (Zi —mZi)
Y520 Z

and apply the second part theorem 21.

= Sn/f((S)n)



Problem 5
Let N be a strictly positive integer, Xog = 1 and X3, Xo, - be a sequence
of dependent non-negative integer valued random variables and

F={Fo,F1,F2,---}

be a filtration generated by these random variables.
For m,n € {0,1,--- , N} and for k € {0,1,2,---}, set

P(Xjs1 = n|Fp) = P(Xpp1 = 1| X5)

P(Xkt1 =n|Xr =m) = <]X> (%)” (1 B %>N7n

k
Define Y = (%) Xu(N — Xp) and let T = min{k > 1;Y; = 0}.
a) Show that Yp, Y7, - is a martingale with respect to F. (4p)
Solution: Using the binomial theorem (in last line below):

and

ez =3 (0) () (1-5) " (3) e =)
j=0
N—-1 . j n
e} NN -1) j—l()]'\(TNE)j—l (%) ( ) <N]\—71) h
v () () () T E (D) G e

(N_ )nX (N~ X,) =Y,

Furthermore, E(|Y,]) = E(Y,) = E(Y1) = Yp = N — 1 < oo by the above

computation.



b) Show that

AN — 1)

(L= 1/N)" <B(I'>n) < (1 - 1/N)".

(8p)
Hint: Note that if Y, # 0 then ¥, > ()" (N=1)and ¥, < ()" N?/4.
Solution: by Y7 =0 and Y,,41 =0 if Y, =0, we have

N —1=E(Y,) =EY,|T >n)P(T >n)+EY,|T <n)P(T <n)
=E(Y,|T > n)P(T > n) +E(Y7|T < n)P(T <n)
=E(Y,|T > n)P(T > n).
So,
P(T >n)=(N—1)/E(Y,|T > n).
Using the hint we obtain:
N \" N \"N?
— 1)< < =) =
(N—l) (N 1)_E(YnT>n)_(N_1> 1

The statement of the question follows immediately from the final two dis-
plays.



