
Solutions exam Probability III

November, 2021

Problem 1

Let (Ω,F ,P) be a probability space, and let X be a random variable being

de�ned on this space. Let A be a sub-σ-�eld of F , generated by a �nite

partition P = {A1, A2, · · · , An}.
(a) Provide the de�nition of an F-measurable random variable. (Just using

Proposition 3 of the cheat-sheet is not enough). (4p)

Solution: Given a sample space (Ω,F), a F-measurable random variable is

a function X : Ω → R with the property that the set {ω ∈ Ω : X(ω) ∈ B}
belongs to F for each Borel set B ∈ B, where B is the Borel σ-algebra on R.

For part (b) and (c), let X̂ = E[X|A].
(b) Show that if Y is an A-measurable random variable, then

E[(X − X̂)Y ] = 0. (4p)

Solution: By Thm 4.8 (iii) from A and D:

E[(X − X̂)Y ] = E[XY ]− E[X̂Y ] = E[E[XY |A]]− E[X̂Y ]

= E[E[X|A]Y ]− E[X̂Y ]

where we have used that Y is A measurable and therefore can be taken out

of the conditional expectation. The �nal line can be rewritten as E[X̂Y ] −
E[X̂Y ], which obviously is equal to 0.

(c) Show that if Z is an A-measurable random variable, then

E[(X − Z)2] ≥ E[(X − X̂)2]. (4p)

Solution:

E[(X−Z)2] = E[([X−X̂]+[X̂−Z])2] = E[[X−X̂]2]+2E[([X−X̂][X̂−Z])]+E[[X̂−Z]2].

We note that X̂ − Z is A measurable and therefore by part b) the second

summand is 0. The third summand is at least 0 because it is the expectation

of a square. and the statement in the question follows.
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Problem 2 or λ > 0, let Xλ be Poisson distributed with parameter λ. That
is

P(Xλ = k) =
λk

k!
e−λ for k ∈ {0, 1, 2, · · · }

and P(Xλ = k) = 0 for k 6∈ {0, 1, 2, · · · }.
a) Compute ψλ(t) = E[etXλ ], for t ∈ R. That is, compute the moment

generating function of Xλ? (2p)

Solution:

ψλ(t) = E[etXλ ] =

∞∑
k=0

λk

k!
e−λetk =

∞∑
k=0

(λet)k

k!
e−λ = eλe

t
e−λ = eλ(e

t−1).

De�ne Yλ = (Xλ − λ)/
√
λ.

b) Compute ψ̂λ(t) = E[etYλ ], for t ∈ R. That is, compute the moment

generating function of Yλ? (2p)

Solution: Note Yλ = Xλ/
√
λ−
√
λ and by standard properties of moment

generating functions we have

ψ̂λ(t) = ψλ(t/
√
λ)e−

√
λt = eλ(e

t/
√
λ−1)e−

√
λt.

Let Z be a standard normal distributed random variable. That is Z has

density

fZ(z) =
1√
2π
e−z

2/2 for z ∈ R.

c) Compute ψZ(t) = E[etZ ], for t ∈ R. That is, compute the moment

generating function of Z? (4p)

Solution:

ψZ(t) = E[etZ ] =

∫ ∞
−∞

1√
2π
e−z

2/2etzdz =
1√
2π
et

2/2

∫ ∞
−∞

e−(z−t)
2/2dz = et

2/2
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In part d) you may use without proof that the characteristic function of Yλ
is given by ψ̂λ(it) and the characteristic function of Z is given by ψZ(it),
where i =

√
−1.

d) Show that Yλ converges in distribution to Z as λ→∞. (4p)

Solution: From part b) and the hint it follows that the characteristic func-

tion of Yλ is given by e
λ(eit/

√
λ−1)−

√
λit. The exponent can be Taylor expended

as

−t2/2− it3/(6
√
λ) +O(1/λ).

So the characteristic function of Yλ converges to e−t
2/2 as λ → ∞, which

by part c) and the hint is the characteristic function of a standard normal

distribution. And the result follows because convergence of characteristic

functions implies convergence in distribution.
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Problem 3

Let X1, X2, · · · be a sequence of random variables and X another random

variable, all de�ned on (Ω,F ,P).
a) Let g : [0,∞) 7→ [0,∞) be a strictly increasing function. Show that

P(|X| > ε) ≤ E[g(|X|)]
g(ε)

.

(3p)

Solution: Let A = {ω, |X(ω)| > ε}. For all x > 0 and ε ≥ 0, we have

g(x) ≥ 11(g(x) > g(ε))g(ε). Further x > ε if and only if g(x) > g(ε) because
g(·) is strictly increasing. Therefore,

E(g(|X|)) ≥ E(g(ε)11(A)) = g(ε)P(A) = g(ε)P(|X| > ε),

and the statement follows.

b) Let g(x) = x/(1 +x). Show that Xn
P→ 0 if and only if g(|Xn|) converges

in expectation to 0. (6p)

Solution: Assume that g(|Xn|)
1→ 0, i.e. assume that E[g(|Xn|)]→ 0. Note

that g(x) = 1− 1/(1 + x) is strictly increasing in x. Then for ε > 0 by part

a):

P(|Xn| > ε) ≤ E[g(|Xn|)]
g(ε)

=
1 + ε

ε
E [g(|Xn|)]→ 0,

by g(|Xn|)
1→ 0.

Then assume that Xn
P→ 0, i.e. P(|Xn| > ε) → 0 for all ε > 0. Note that

g(x) ∈ [0, 1) and is increasing for x ∈ [0,∞). So, for all ε > 0

E (g(|Xn|)) = E (g(|Xn|)11(Xn ≤ ε)) + E (g(|Xn|)11(Xn > ε))

≤ E
(

ε

1 + ε
11(Xn ≤ ε)

)
+E (1× 11(Xn > ε)) =

ε

1 + ε
P(|Xn| ≤ ε)+P(|Xn| > ε)

=
ε

1 + ε
(1− P(|Xn| > ε)) + P(|Xn| > ε)→ ε

1 + ε

as n→∞ by Xn
P→ 0. Since ε can be chosen arbitrary small, E (g(|Xn|)) =

E (|g(|Xn|)− 0|)→ 0 and the statement of the question follows.

c) Show that if Xn converges in expectation to X then Xn converges in

probability to X. (3p)

Solution: Using part a) with g(x) = x gives that for ε > 0

P(|Xn −X| > ε) ≤ E[|Xn −X|]/ε→ 0

by the convergence in expectation of Xn to X.
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Problem 4

Consider a supercritical Galton-Watson Branching Process {Z0, Z1, Z2, · · · }
with Z0 = 1. That is, let {Xij}i=0,1,2,··· ;j=1,2,··· be independent and iden-

tically distributed random variables with the same distribution as the non-

negative integer valued random variable X. De�ne

Z0 = 1 and Zk+1 =

Zk∑
j=1

Xkj for k ≥ 0.

Assume P(X ≥ 1) = 1, E[X] = m > 1 and V ar[X] = σ2 <∞.

a) Show that for all n ≥ 1

E[Zn] = mn and E[(Zn)2] = m2E[(Zn−1)
2] +mn−1σ2.

Deduce from this (e.g. by induction) that for n ≥ 1,

E[(Zn)2] = m2n + σ2
n∑
k=1

mn−km2(k−1) = m2n + σ2mn−1m
n − 1

m− 1
. (4p)

Solution: First,

E[Zn] = E[E[Zn|Zn−1]] = mE[Zn−1] = · · · = mnZ0 = mn.

Then,

E[(Zn)2] = E[E[(Zn)2|Zn−1]] = E[E[(

Zn−1∑
j=1

Xn−1,j)(

Zn−1∑
k=1

Xn−1,k)|Zn−1]]

= E[

Zn−1∑
j=1

E[(Xn−1,j)
2|Zn−1]] + 2E[E[

Zn−1−1∑
j=1

Zn−1∑
k=j+1

Xn−1,jXn−1,k|Zn−1]]

= E[Zn−1](σ
2 +m2) + E[Zn−1(Zn−1 − 1)]m2 = mn−1σ2 +m2E[(Zn−1)

2].

Now assume that E[(Zn)2] = m2n + σ2
∑n

k=1m
n−km2(k−1), then we �nish

the proof by noting that E[(Z1)
2] = m2 + σ2 = m2·1 + σ2m1−1m1−1

m−1 and

E[(Zn+1)
2] = mnσ2+m2E[(Zn)2] = mnσ2+m2

(
m2n + σ2

n∑
k=1

mn−km2(k−1)

)

= mnσ2+m2(n+1)+σ2
n∑
k=1

mn−km2(k) = mnσ2+m2(n+1)+σ2
n+1∑
`=2

mn+1−`m2(`−1)

= m2(n+1) + σ2
n+1∑
`=1

mn+1−`m2(`−1).
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b) Show that Wn = m−nZn converges almost surely to a random variable

W as n→∞. (4p)

Solution:

E[Wn+1|Z0, Z1, · · ·Zn] = m−(n+1)E[Zn+1|Zn] = m−(n+1)mZn = m−nZn = Wn.

Also E[|Wn|] = E[Wn] = E[W0] = 1 < ∞. So, W0,W1, · · · is a martingale,

with respect to �ltration generated by Z0, Z1, · · · . Furthermore, we have

E[(Wn)2] = m−2nE[(Zn)2] = 1 + σ2
1−m−n

m2 −m
→ 1 + σ2(m2 −m)−1 <∞.

Here we have used that m > 1. The Martingale convergence theorem now

gives the statement of the question.

c) Show that as n→∞,∑n
i=1 Zi∑n−1
j=0 Zj

−m =

∑n
i=1(Zi −mZi−1)∑n−1

j=0 Zj

a.s.→ 0.

(4p)

Hint: Note that by P(X ≥ 1) = 1 we have P(Zn+1 ≥ Zn) = 1 for all n ∈ N
and therefore

∑n
i=1 Zi →∞ as n→∞.

Solution: Use Theorem 21 of cheat sheet, with

Sn =

n∑
i=1

(Zi −mZi−1) and f(x) = max(1, x).

First observe that Sn is a martingale because E[Zi−mZi−1] = 0 for all i and
then using that E[(Zi −mZi−1)(Zj −mZj−1)] = 0 for i 6= j and therefore

that (Zi −mZi−1) and (Zj −mZj−1) are uncorrelated we obtain for all n

E[(Sn)2] =

n∑
i=1

E[(Zi −mZi−1)2] =

n∑
i=1

σ2E[Zi−1] <∞.

Note that

〈S〉n =

n∑
k=1

E((Sk − Sk−1)2|Fk−1) =

n∑
k=1

V ar(Zk|Zk−1) = σ2
n∑
k=1

Zk−1 →∞

and thus we have that∑n
i=1(Zi −mZi−1)∑n−1

j=0 Zj
= Sn/f(〈S〉n)

and apply the second part theorem 21.
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Problem 5

Let N be a strictly positive integer, X0 = 1 and X1, X2, · · · be a sequence

of dependent non-negative integer valued random variables and

F = {F0,F1,F2, · · · }

be a �ltration generated by these random variables.

For m,n ∈ {0, 1, · · · , N} and for k ∈ {0, 1, 2, · · · }, set

P(Xk+1 = n|Fk) = P(Xk+1 = n|Xk)

and

P(Xk+1 = n|Xk = m) =

(
N

n

)(m
N

)n (
1− m

N

)N−n
De�ne Yk =

(
N
N−1

)k
Xk(N −Xk) and let T = min{k ≥ 1;Yk = 0}.

a) Show that Y0, Y1, · · · is a martingale with respect to F . (4p)

Solution: Using the binomial theorem (in last line below):

E(Yn+1|Fn) =
N∑
j=0

(
N

j

)(Xn

N

)j(
1− Xn

N

)N−j( N

N − 1

)n+1
j(N − j)

=
N−1∑
j=1

N(N − 1)
(N − 2)!

(j − 1)!(N − j − 1)!

(Xn

N

)j(
1− Xn

N

)N−j( N

N − 1

)n+1

= N(N−1)
(Xn

N

)(N −Xn

N

)( N

N − 1

)n+1
N−1∑
j=1

(
N − 2

j − 1

)(Xn

N

)j−1(
1−Xn

N

)N−j−1
=
( N

N − 1

)n
Xn(N −Xn) = Yn

Furthermore, E(|Yn|) = E(Yn) = E(Y1) = Y0 = N − 1 < ∞ by the above

computation.
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b) Show that

4(N − 1)

N2
(1− 1/N)n ≤ P(T > n) ≤ (1− 1/N)n.

(8p)

Hint: Note that if Yn 6= 0 then Yn ≥
(

N
N−1

)n
(N−1) and Yn ≤

(
N
N−1

)n
N2/4.

Solution: by YT = 0 and Yn+1 = 0 if Yn = 0, we have

N − 1 = E(Yn) = E(Yn|T > n)P(T > n) + E(Yn|T ≤ n)P(T ≤ n)

= E(Yn|T > n)P(T > n) + E(YT |T ≤ n)P(T ≤ n)

= E(Yn|T > n)P(T > n).

So,

P(T > n) = (N − 1)/E(Yn|T > n).

Using the hint we obtain:(
N

N − 1

)n
(N − 1) ≤ E(Yn|T > n) ≤

(
N

N − 1

)n N2

4
.

The statement of the question follows immediately from the �nal two dis-

plays.
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