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5 problems. Maximum of 60 points

A B C D E

Needed points 50 45 40 35 30

Partial answers might be worth points, even if you cannot �nish an answer!

You are allowed to use results from the �cheat sheet� without proof, unless

the proof is explicitly asked for in the question. You may also use other

results discussed in the lectures or in the course material, such as the Borel-

Cantelli Lemma's. If you use such a result refer to it by stating the theorem

you are using or by referring to its proper name (e.g. Fatou's lemma), and

explicitly check whether the conditions of the theorem are satis�ed.
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Problem 1

Let (Ω,F ,P) be a probability space, and let X be a random variable being

de�ned on this space. Let A be a sub-σ-�eld of F , generated by a �nite

partition P = {A1, A2, · · · , An}.

(a) Provide the de�nition of an F-measurable random variable. (Just using

Proposition 3 of the cheat-sheet is not enough). (4p)

For part (b) and (c), let X̂ = E[X|A].

(b) Show that if Y is an A-measurable random variable, then

E[(X − X̂)Y ] = 0. (4p)

(c) Show that if Z is an A-measurable random variable, then

E[(X − Z)2] ≥ E[(X − X̂)2]. (4p)
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Problem 2

For λ > 0, let Xλ be Poisson distributed with parameter λ. That is

P(Xλ = k) =
λk

k!
e−λ for k ∈ {0, 1, 2, · · · }

and P(Xλ = k) = 0 for k 6∈ {0, 1, 2, · · · }.

a) Compute ψλ(t) = E[etXλ ], for t ∈ R. That is, compute the moment

generating function of Xλ? (2p)

De�ne Yλ = (Xλ − λ)/
√
λ.

b) Compute ψ̂λ(t) = E[etYλ ], for t ∈ R. That is, compute the moment

generating function of Yλ? (2p)

Let Z be a standard normal distributed random variable. That is Z has

density

fZ(z) =
1√
2π
e−z

2/2 for z ∈ R.

c) Compute ψZ(t) = E[etZ ], for t ∈ R. That is, compute the moment

generating function of Z? (4p)

In part d) you may use without proof that the characteristic function of Yλ
is given by ψ̂λ(it) and the characteristic function of Z is given by ψZ(it),
where i =

√
−1.

d) Show that Yλ converges in distribution to Z as λ→∞. (4p)
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Problem 3

Let X1, X2, · · · be a sequence of random variables and X another random

variable, all de�ned on (Ω,F ,P).

a) Let g : [0,∞) 7→ [0,∞) be a strictly increasing function. Show that

P(|X| > ε) ≤ E[g(|X|)]
g(ε)

.

(3p)

b) Let g(x) = x/(1 +x). Show that Xn
P→ 0 if and only if g(|Xn|) converges

in expectation to 0. (6p)

c) Show that if Xn converges in expectation to X then Xn converges in

probability to X. (3p)
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Problem 4

Consider a supercritical Galton-Watson Branching Process {Z0, Z1, Z2, · · · }
with Z0 = 1. That is, let {Xij}i=0,1,2,··· ;j=1,2,··· be independent and iden-

tically distributed random variables with the same distribution as the non-

negative integer valued random variable X. De�ne

Z0 = 1 and Zk+1 =

Zk∑
j=1

Xkj for k ≥ 0.

Assume P(X ≥ 1) = 1, E[X] = m > 1 and V ar[X] = σ2 <∞.

a) Show that for all n ≥ 1

E[Zn] = mn and E[(Zn)2] = m2E[(Zn−1)
2] +mn−1σ2.

Deduce from this (e.g. by induction) that for n ≥ 1,

E[(Zn)2] = m2n + σ2
n∑
k=1

mn−km2(k−1) = m2n + σ2mn−1m
n − 1

m− 1
. (4p)

b) Show that Wn = m−nZn converges almost surely to a random variable

W as n→∞. (4p)

c) Show that as n→∞,∑n
i=1 Zi∑n−1
j=0 Zj

−m =

∑n
i=1(Zi −mZi−1)∑n−1

j=0 Zj

a.s.→ 0.

(4p)

Hint: Note that by P(X ≥ 1) = 1 we have P(Zn+1 ≥ Zn) = 1 for all n ∈ N
and therefore

∑n
i=1 Zi →∞ as n→∞.
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Problem 5

Let N be a strictly positive integer, X0 = 1 and X1, X2, · · · be a sequence

of dependent non-negative integer valued random variables and

F = {F0,F1,F2, · · · }

be a �ltration generated by thes random variables.

For m,n ∈ {0, 1, · · · , N} and for k ∈ {0, 1, 2, · · · }, set

P(Xk+1 = n|Fk) = P(Xk+1 = n|Xk)

and

P(Xk+1 = n|Xk = m) =

(
N

n

)(m
N

)n (
1− m

N

)N−n
De�ne Yk =

(
N
N−1

)k
Xk(N −Xk) and let T = min{k ≥ 1;Yk = 0}.

a) Show that Y0, Y1, · · · is a martingale with respect to F . (4p)

b) Show that

4(N − 1)

N2
(1− 1/N)n ≤ P(T > n) ≤ (1− 1/N)n.

(8p)

Hint: Note that if Yn 6= 0 then Yn ≥
(

N
N−1

)n
(N−1) and Yn ≤

(
N
N−1

)n
N2/4.

Good Luck!
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Reminder

σ-algebras, probability measures and expectation

De�nition 1 The Borel σ-algebra on R, is the smallest σ-algebra generated

by the open subsets of R. This de�nition can be extended to Rd for d ≥ 1.

De�nition 2

lim sup
n→∞

An := ∩∞n=1 ∪∞m=n Am

lim inf
n→∞

An := ∪∞n=1 ∩∞m=n Am

Proposition 3 A random variable X is F-measurable if and only if

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} belongs to F .

De�nition 4 The distribution measure µX of the random variable X is the

probability measure on (R,B) de�ned by µX(B) = P(X ∈ B) for Borel sets

B ∈ B, where B is the Borel σ-algebra.

Proposition 5 If the σ-algebra A is generated by a �nite partition P. Then
the function Y is A measurable if and only if Y is constant on each element

of P.

Lemma 6 If X,Y satisfy min(E(X+),E(X−)) <∞, then

(i) E(aX + bY ) = aE(X) + bE(Y ) (linearity)

(ii) E(X) ≤ E(Y ) if X ≤ Y a.s. (monotonicity)

De�nition 7 Let P = {A1, · · · , An} be a �nite partition, which generates

the σ-algebra A ⊂ F , then E(X|A)(ω) =
∑n

i=1 E(X|Ai)11(ω ∈ Ai) for ω ∈ Ω

Lemma 8 (Jensen's inequality) We have E(φ(X)) ≥ φ(E(X)) for con-

vex functions φ.
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Characteristic functions

De�nition 9 the Characteristic function of a random variable X is the

function ϕ : R → C, de�ned by ϕX(t) = E(eitX) = E(cos[tX]) + iE(sin[tx])
where i =

√
−1.

Properties of ϕX :

� ϕX(0) = 1

� |ϕX(t)| ≤ 1

� ϕX(−t) = ϕX(t)

� If a, b ∈ R and Y = aX + b then ϕY (t) = eitbϕX(at)

� If the random variables X and Y are independent, then ϕX+Y (t) =
ϕX(t)ϕY (t)

� ϕX is real if and only if X and −X have the same distribution, (X is

symmetric)

Theorem 10 Let X be a random variable with distribution function F and

characteristic function ϕ. If F is continuous in both a and b, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt

special cases:

� If
∫
R |ϕ(t)|dt <∞, then X has a continuous distribution with density

f(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt

� If the distribution of X is discrete, then

P(X = x) = lim
T→∞

1

2T

∫ T

−T
e−itxϕ(t)dt

Theorem 11 Let ϕ(k)(·) be the k-th complex derivative of ϕ.

� If ϕ
(k)
X (0) exists then E(|Xk|) <∞ if k is even and E(|Xk−1|) <∞ if

k is odd

� if E(|Xk|) < ∞ then ϕX(t) =
∑k

j=0
E(Xj)
j! (it)j + o(tk), where f(x) =

o(x) if f(x)/x→ 0 for x→ 0
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Some useful results for convergence results

Chebychev's inequality: P(|X| > x) ≤ E(X2)
x2

Markov inequality: P(|X| > x) ≤ E(|X|r)
xr

Hölder's inequality: For p, q > 1 such that 1/p+ 1/q = 1 we have

E(|XY |) ≤ [E(|X|p)]1/p[E(|X|q)]1/q

Minkovski's inequality: For r ≥ 1 we have

[E(|X + Y |r)]1/r ≤ [E(|X|r)]1/r + [E(|X|r)]1/r

Lemma 12 (Fatou's Lemma) Let X1, X2, · · · be non-negative random vari-

ables, then E(lim inf Xn) ≤ lim inf E(Xn).

De�nition 13 (Tail events) If X1, X2, · · · are random variables on (Ω,F ,P)
and Hn = σ(Xn+1, Xn+2, · · · ) is the smallest σ-algebra in which all random

variables Xn+1, Xn+2, · · · are measurable, then H∞ := ∩nHn is called the

tail σ-algebra, and events contained in it are tail events.

Theorem 14 (Kolmogorov's zero-one law) If X1, X2, · · · are indepen-

dent, then all tail events H ⊂ H∞ satisfy either P(H) = 1 or P(H) = 0

De�nition 15 (Uniform integrability) A sequence of r.v. X1, X2, · · · is
uniformly integrable if

sup
n≥1

E(|Xn|11(|Xn| > a))→ 0 as a→∞

Theorem 16 Let X and X1, X2, · · · be random variables such that Xn
P→ X

then the following statements are equivalent

1. X1, X2, · · · is uniformly integrable

2. E(|Xn|) <∞ for all n, E(|X|) <∞ and Xn
1→ X

3. E(|Xn|) <∞ and E(|Xn|)→ E(|X|) <∞
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Martingales

Some Properties of martingales: Let S1, S2, · · · be a martingale with

respect to F = (F0,F1, · · · ).

� E(Sn+m|Fn) = Sn

� E(Sn) = E(S1)

� E((Sn)2) is non decreasing

Theorem 17 (Doob decomposition) A F-submartingale Y0, Y1, · · · with
�nite means may be expressed in the form Yn = Mn +Sn, where M1,M2, · · ·
is a F-martingale and Sn is Fn−1 measurable for all n. This decomposition

is unique.

Lemma 18 (Doob-Kolmogorov inequality) If S1, S2, · · · is a martin-

gale with respect to F , then for all ε > 0 we have P
(

max
1≤k≤n

|Sk| ≥ ε
)
≤

ε−2E((Sn)2).

Theorem 19 (Martingale convergence theorem) If S1, S2, · · · is a mar-

tingale with respect to F and E((Sn)2)↗M <∞, then there exists a random

variable S such that Sn
a.s.→ S.

De�nition 20 (Cauchy sequence) A sequence of real numbers x1, x2, · · ·
is a Cauchy sequence if for all ε > 0 there exists an N such that for all

n ≥ m ≥ N , we have |xn − xm| < ε.
We know that a sequence is convergent if and only if it is a Cauchy sequence.

Theorem 21 Let S0, S1, · · · be a martingale with respect to F such that

S0 = 0 and E((Sn)2) <∞ for all n. De�ne

〈S〉n =

n∑
k=1

E((Sk − Sk−1)2|Fk−1) and 〈S〉∞ = lim
n→∞

〈S〉n.

Let f ≥ 1 be a given increasing function satisfying
∫∞
0 [f(x)]−2dx < ∞.

Then,

(i) On {ω : 〈S(ω)〉∞ <∞} Sn
a.s.→ S for some random variable S

(ii) On {ω : 〈S(ω)〉∞ =∞}, Sn/f(〈S〉n)
a.s.→ 0

Theorem 22 (Strong Law of Large Numbers) Let X1, X2, · · · be i.i.d.

with E(X1) = µ and V ar(X1) = σ2 < ∞ and de�ne S0 = 0 and Sn =∑n
k=1(Xk − µ) for n ≥ 1. Then Sn

n
a.s.→ 0.
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Theorem 23 (Martingale Central Limit theorem) S0, S1, · · · is a mar-

tingale with respect to F , with S0 = 0 and E((Sn)2) <∞ for all n. Assume

that n−1〈S〉n
P→ σ2 > 0 and for all ε > 0

1

n

n∑
k=1

E((Sk − Sk−1)211((Sk − Sk−1)2 > εn))→ 0.

Then, 1√
nσ2

Sn
d→ N (0, 1)

Theorem 24 (Optional stopping I) Let S1, S2, · · · be a martingale with

respect to F . If T is an a.s. bounded stopping time for F (i.e. P(T ≤ a) = 1
for some a ≥ 0), then E(ST ) = E(S1).

Theorem 25 (Optional stopping II) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the

following conditions hold

� P(T <∞) = 1,

� E(|ST |) <∞,

� E(Sn11(T > n))→ 0 as n→∞.

Theorem 26 (Optional Stopping III) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the fol-

lowing conditions hold

� E(T ) <∞,

� E(|Sn+1 − Sn||Fn) ≤ K for all n < T and some K > 0

Wald's equation and identity: If X1, X2, · · · are i.i.d. random variables

with E(X1) = µ <∞ and Sn =
∑n

k=1Xk and T is a stopping time satisfying

E(T ) <∞, then E(ST ) = µE(T ).
If in addition there exists a h > 0 such that M(t) = E(etX1) < ∞ for all

|t| < h and M(t) > 1 and |Sn| < C for some constant C > 0 and all n ≤ T ,
then E(etST [M(t)]−T ) = 1.


