STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN

Avd. Matematisk statistik

Second Exam Probability III

November 25, 2021 kl. 8-13

Examiner: Pieter Trapman, tel. 07 22928174, ptrapman "at" math.su.se or Daniel De La Riva Massaad, tel. 0738220230 daniel.delariva "at" math.su.se Permissible tools: pen, paper and attached "cheat-sheet"

5 problems. Maximum of 60 points

$$
\begin{array}{lccccc}
& \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\
\text { Needed points } & 50 & 45 & 40 & 35 & 30
\end{array}
$$

Partial answers might be worth points, even if you cannot finish an answer! You are allowed to use results from the "cheat sheet" without proof, unless the proof is explicitly asked for in the question. You may also use other results discussed in the lectures or in the course material, such as the BorelCantelli Lemma's. If you use such a result refer to it by stating the theorem you are using or by referring to its proper name (e.g. Fatou's lemma), and explicitly check whether the conditions of the theorem are satisfied.

Problem 1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let X be a random variable being defined on this space. Let \mathcal{A} be a sub- σ-field of \mathcal{F}, generated by a finite partition $\mathcal{P}=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$.
(a) Provide the definition of an \mathcal{F}-measurable random variable. (Just using Proposition 3 of the cheat-sheet is not enough).

For part (b) and (c), let $\hat{X}=\mathbb{E}[X \mid \mathcal{A}]$.
(b) Show that if Y is an \mathcal{A}-measurable random variable, then $\mathbb{E}[(X-\hat{X}) Y]=0$.
(c) Show that if Z is an \mathcal{A}-measurable random variable, then $\mathbb{E}\left[(X-Z)^{2}\right] \geq \mathbb{E}\left[(X-\hat{X})^{2}\right]$.

Problem 2

For $\lambda>0$, let X_{λ} be Poisson distributed with parameter λ. That is

$$
\mathbb{P}\left(X_{\lambda}=k\right)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for } k \in\{0,1,2, \cdots\}
$$

and $\mathbb{P}\left(X_{\lambda}=k\right)=0$ for $k \notin\{0,1,2, \cdots\}$.
a) Compute $\psi_{\lambda}(t)=\mathbb{E}\left[e^{t X_{\lambda}}\right]$, for $t \in \mathbb{R}$. That is, compute the moment generating function of X_{λ} ?

Define $Y_{\lambda}=\left(X_{\lambda}-\lambda\right) / \sqrt{\lambda}$.
b) Compute $\hat{\psi}_{\lambda}(t)=\mathbb{E}\left[e^{t Y_{\lambda}}\right]$, for $t \in \mathbb{R}$. That is, compute the moment generating function of Y_{λ} ?

Let Z be a standard normal distributed random variable. That is Z has density

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \quad \text { for } z \in \mathbb{R}
$$

c) Compute $\psi_{Z}(t)=\mathbb{E}\left[e^{t Z}\right]$, for $t \in \mathbb{R}$. That is, compute the moment generating function of Z ?

In part d) you may use without proof that the characteristic function of Y_{λ} is given by $\hat{\psi}_{\lambda}(i t)$ and the characteristic function of Z is given by $\psi_{Z}(i t)$, where $i=\sqrt{-1}$.
d) Show that Y_{λ} converges in distribution to Z as $\lambda \rightarrow \infty$.

Problem 3

Let X_{1}, X_{2}, \cdots be a sequence of random variables and X another random variable, all defined on $(\Omega, \mathcal{F}, \mathbb{P})$.
a) Let $g:[0, \infty) \mapsto[0, \infty)$ be a strictly increasing function. Show that

$$
\mathbb{P}(|X|>\epsilon) \leq \frac{\mathbb{E}[g(|X|)]}{g(\epsilon)}
$$

b) Let $g(x)=x /(1+x)$. Show that $X_{n} \xrightarrow{\mathbb{P}} 0$ if and only if $g\left(\left|X_{n}\right|\right)$ converges in expectation to 0 .
c) Show that if X_{n} converges in expectation to X then X_{n} converges in probability to X.

Problem 4

Consider a supercritical Galton-Watson Branching Process $\left\{Z_{0}, Z_{1}, Z_{2}, \cdots\right\}$ with $Z_{0}=1$. That is, let $\left\{X_{i j}\right\}_{i=0,1,2, \cdots ; j=1,2, \cdots}$ be independent and identically distributed random variables with the same distribution as the nonnegative integer valued random variable X. Define

$$
Z_{0}=1 \quad \text { and } \quad Z_{k+1}=\sum_{j=1}^{Z_{k}} X_{k j} \quad \text { for } k \geq 0
$$

Assume $\mathbb{P}(X \geq 1)=1, \mathbb{E}[X]=m>1$ and $\operatorname{Var}[X]=\sigma^{2}<\infty$.
a) Show that for all $n \geq 1$

$$
\mathbb{E}\left[Z_{n}\right]=m^{n} \quad \text { and } \quad \mathbb{E}\left[\left(Z_{n}\right)^{2}\right]=m^{2} \mathbb{E}\left[\left(Z_{n-1}\right)^{2}\right]+m^{n-1} \sigma^{2}
$$

Deduce from this (e.g. by induction) that for $n \geq 1$,

$$
\begin{equation*}
\mathbb{E}\left[\left(Z_{n}\right)^{2}\right]=m^{2 n}+\sigma^{2} \sum_{k=1}^{n} m^{n-k} m^{2(k-1)}=m^{2 n}+\sigma^{2} m^{n-1} \frac{m^{n}-1}{m-1} \tag{4p}
\end{equation*}
$$

b) Show that $W_{n}=m^{-n} Z_{n}$ converges almost surely to a random variable W as $n \rightarrow \infty$.
c) Show that as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} Z_{i}}{\sum_{j=0}^{n-1} Z_{j}}-m=\frac{\sum_{i=1}^{n}\left(Z_{i}-m Z_{i-1}\right)}{\sum_{j=0}^{n-1} Z_{j}} \xrightarrow{\text { a.s. }} 0 \tag{4p}
\end{equation*}
$$

Hint: Note that by $\mathbb{P}(X \geq 1)=1$ we have $\mathbb{P}\left(Z_{n+1} \geq Z_{n}\right)=1$ for all $n \in \mathbb{N}$ and therefore $\sum_{i=1}^{n} Z_{i} \rightarrow \infty$ as $n \rightarrow \infty$.

Problem 5

Let N be a strictly positive integer, $X_{0}=1$ and X_{1}, X_{2}, \cdots be a sequence of dependent non-negative integer valued random variables and

$$
\underline{\mathcal{F}}=\left\{\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \cdots\right\}
$$

be a filtration generated by thes random variables.
For $m, n \in\{0,1, \cdots, N\}$ and for $k \in\{0,1,2, \cdots\}$, set

$$
\mathbb{P}\left(X_{k+1}=n \mid \mathcal{F}_{k}\right)=\mathbb{P}\left(X_{k+1}=n \mid X_{k}\right)
$$

and

$$
\mathbb{P}\left(X_{k+1}=n \mid X_{k}=m\right)=\binom{N}{n}\left(\frac{m}{N}\right)^{n}\left(1-\frac{m}{N}\right)^{N-n}
$$

Define $Y_{k}=\left(\frac{N}{N-1}\right)^{k} X_{k}\left(N-X_{k}\right)$ and let $T=\min \left\{k \geq 1 ; Y_{k}=0\right\}$.
a) Show that Y_{0}, Y_{1}, \cdots is a martingale with respect to $\underline{\mathcal{F}}$.
b) Show that

$$
\begin{equation*}
\frac{4(N-1)}{N^{2}}(1-1 / N)^{n} \leq \mathbb{P}(T>n) \leq(1-1 / N)^{n} \tag{8p}
\end{equation*}
$$

Hint: Note that if $Y_{n} \neq 0$ then $Y_{n} \geq\left(\frac{N}{N-1}\right)^{n}(N-1)$ and $Y_{n} \leq\left(\frac{N}{N-1}\right)^{n} N^{2} / 4$.

Reminder

σ-algebras, probability measures and expectation

Definition 1 The Borel σ-algebra on \mathbb{R}, is the smallest σ-algebra generated by the open subsets of \mathbb{R}. This definition can be extended to \mathbb{R}^{d} for $d \geq 1$.

Definition 2

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} A_{n}:=\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_{m} \\
& \liminf _{n \rightarrow \infty} A_{n}:=\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m}
\end{aligned}
$$

Proposition 3 A random variable X is \mathcal{F}-measurable if and only if $\{X \leq x\}:=\{\omega \in \Omega: X(\omega) \leq x\}$ belongs to \mathcal{F}.

Definition 4 The distribution measure μ_{X} of the random variable X is the probability measure on $(\mathbb{R}, \mathcal{B})$ defined by $\mu_{X}(B)=\mathbb{P}(X \in B)$ for Borel sets $B \in \mathcal{B}$, where \mathcal{B} is the Borel σ-algebra.

Proposition 5 If the σ-algebra \mathcal{A} is generated by a finite partition \mathcal{P}. Then the function Y is \mathcal{A} measurable if and only if Y is constant on each element of \mathcal{P}.

Lemma 6 If X, Y satisfy $\min \left(\mathbb{E}\left(X^{+}\right), \mathbb{E}\left(X^{-}\right)\right)<\infty$, then
(i) $\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y) \quad$ (linearity)
(ii) $\mathbb{E}(X) \leq \mathbb{E}(Y)$ if $X \leq Y$ a.s. (monotonicity)

Definition 7 Let $\mathcal{P}=\left\{A_{1}, \cdots, A_{n}\right\}$ be a finite partition, which generates the σ-algebra $\mathcal{A} \subset \mathcal{F}$, then $\mathbb{E}(X \mid \mathcal{A})(\omega)=\sum_{i=1}^{n} \mathbb{E}\left(X \mid A_{i}\right) \mathbb{1}\left(\omega \in A_{i}\right)$ for $\omega \in \Omega$

Lemma 8 (Jensen's inequality) We have $\mathbb{E}(\phi(X)) \geq \phi(\mathbb{E}(X))$ for convex functions ϕ.

Characteristic functions

Definition 9 the Characteristic function of a random variable X is the function $\varphi: \mathbb{R} \rightarrow \mathbb{C}$, defined by $\varphi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)=\mathbb{E}(\cos [t X])+i \mathbb{E}(\sin [t x])$ where $i=\sqrt{-1}$.

Properties of φ_{X} :

- $\varphi_{X}(0)=1$
- $\left|\varphi_{X}(t)\right| \leq 1$
- $\varphi_{X}(-t)=\overline{\varphi_{X}(t)}$
- If $a, b \in \mathbb{R}$ and $Y=a X+b$ then $\varphi_{Y}(t)=e^{i t b} \varphi_{X}(a t)$
- If the random variables X and Y are independent, then $\varphi_{X+Y}(t)=$ $\varphi_{X}(t) \varphi_{Y}(t)$
- φ_{X} is real if and only if X and $-X$ have the same distribution, $(X$ is symmetric)

Theorem 10 Let X be a random variable with distribution function F and characteristic function φ. If F is continuous in both a and b, then

$$
F(b)-F(a)=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t b}-e^{-i t a}}{-i t} \varphi(t) d t
$$

special cases:

- If $\int_{\mathbb{R}}|\varphi(t)| d t<\infty$, then X has a continuous distribution with density

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \varphi(t) d t
$$

- If the distribution of X is discrete, then

$$
\mathbb{P}(X=x)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t x} \varphi(t) d t
$$

Theorem 11 Let $\varphi^{(k)}(\cdot)$ be the k-th complex derivative of φ.

- If $\varphi_{X}^{(k)}(0)$ exists then $\mathbb{E}\left(\left|X^{k}\right|\right)<\infty$ if k is even and $\mathbb{E}\left(\left|X^{k-1}\right|\right)<\infty$ if k is odd
- if $\mathbb{E}\left(\left|X^{k}\right|\right)<\infty$ then $\varphi_{X}(t)=\sum_{j=0}^{k} \frac{\mathbb{E}\left(X^{j}\right)}{j!}(i t)^{j}+o\left(t^{k}\right)$, where $f(x)=$ $o(x)$ if $f(x) / x \rightarrow 0$ for $x \rightarrow 0$

Some useful results for convergence results

Chebychev's inequality: $\mathbb{P}(|X|>x) \leq \frac{\mathbb{E}\left(X^{2}\right)}{x^{2}}$

Markov inequality: $\mathbb{P}(|X|>x) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{x^{r}}$
Hölder's inequality: For $p, q>1$ such that $1 / p+1 / q=1$ we have

$$
\mathbb{E}(|X Y|) \leq\left[\mathbb{E}\left(|X|^{p}\right)\right]^{1 / p}\left[\mathbb{E}\left(|X|^{q}\right)\right]^{1 / q}
$$

Minkovski's inequality: For $r \geq 1$ we have

$$
\left[\mathbb{E}\left(|X+Y|^{r}\right)\right]^{1 / r} \leq\left[\mathbb{E}\left(|X|^{r}\right)\right]^{1 / r}+\left[\mathbb{E}\left(|X|^{r}\right)\right]^{1 / r}
$$

Lemma 12 (Fatou's Lemma) Let X_{1}, X_{2}, \cdots be non-negative random variables, then $\mathbb{E}\left(\lim \inf X_{n}\right) \leq \lim \inf \mathbb{E}\left(X_{n}\right)$.

Definition 13 (Tail events) If X_{1}, X_{2}, \cdots are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{H}_{n}=\sigma\left(X_{n+1}, X_{n+2}, \cdots\right)$ is the smallest σ-algebra in which all random variables X_{n+1}, X_{n+2}, \cdots are measurable, then $\mathcal{H}_{\infty}:=\cap_{n} \mathcal{H}_{n}$ is called the tail σ-algebra, and events contained in it are tail events.

Theorem 14 (Kolmogorov's zero-one law) If X_{1}, X_{2}, \cdots are independent, then all tail events $H \subset \mathcal{H}_{\infty}$ satisfy either $\mathbb{P}(H)=1$ or $\mathbb{P}(H)=0$

Definition 15 (Uniform integrability) A sequence of r.v. X_{1}, X_{2}, \cdots is uniformly integrable if

$$
\sup _{n \geq 1} \mathbb{E}\left(\left|X_{n}\right| \mathbb{1}\left(\left|X_{n}\right|>a\right)\right) \rightarrow 0 \quad \text { as } a \rightarrow \infty
$$

Theorem 16 Let X and X_{1}, X_{2}, \cdots be random variables such that $X_{n} \xrightarrow{\mathbb{P}} X$ then the following statements are equivalent

1. X_{1}, X_{2}, \cdots is uniformly integrable
2. $\mathbb{E}\left(\left|X_{n}\right|\right)<\infty$ for all $n, \mathbb{E}(|X|)<\infty$ and $X_{n} \xrightarrow{1} X$
3. $\mathbb{E}\left(\left|X_{n}\right|\right)<\infty$ and $\mathbb{E}\left(\left|X_{n}\right|\right) \rightarrow \mathbb{E}(|X|)<\infty$

Martingales

Some Properties of martingales: Let S_{1}, S_{2}, \cdots be a martingale with respect to $\underline{\mathcal{F}}=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \cdots\right)$.

- $\mathbb{E}\left(S_{n+m} \mid \mathcal{F}_{n}\right)=S_{n}$
- $\mathbb{E}\left(S_{n}\right)=\mathbb{E}\left(S_{1}\right)$
- $\mathbb{E}\left(\left(S_{n}\right)^{2}\right)$ is non decreasing

Theorem 17 (Doob decomposition) $A \underline{\mathcal{F}}$-submartingale Y_{0}, Y_{1}, \cdots with finite means may be expressed in the form $Y_{n}=M_{n}+S_{n}$, where M_{1}, M_{2}, \cdots is a $\underline{\mathcal{F}}$-martingale and S_{n} is \mathcal{F}_{n-1} measurable for all n. This decomposition is unique.

Lemma 18 (Doob-Kolmogorov inequality) If S_{1}, S_{2}, \cdots is a martingale with respect to $\underline{\mathcal{F}}$, then for all $\epsilon>0$ we have $\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq \epsilon\right) \leq$ $\epsilon^{-2} \mathbb{E}\left(\left(S_{n}\right)^{2}\right)$.

Theorem 19 (Martingale convergence theorem) If S_{1}, S_{2}, \cdots is a martingale with respect to \mathcal{F} and $\mathbb{E}\left(\left(S_{n}\right)^{2}\right) \nearrow M<\infty$, then there exists a random variable S such that $S_{n} \xrightarrow{\text { a.s. }} S$.

Definition 20 (Cauchy sequence) A sequence of real numbers x_{1}, x_{2}, \ldots is a Cauchy sequence if for all $\epsilon>0$ there exists an N such that for all $n \geq m \geq N$, we have $\left|x_{n}-x_{m}\right|<\epsilon$.
We know that a sequence is convergent if and only if it is a Cauchy sequence.
Theorem 21 Let S_{0}, S_{1}, \cdots be a martingale with respect to $\underline{\mathcal{F}}$ such that $S_{0}=0$ and $\mathbb{E}\left(\left(S_{n}\right)^{2}\right)<\infty$ for all n. Define

$$
\langle S\rangle_{n}=\sum_{k=1}^{n} \mathbb{E}\left(\left(S_{k}-S_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right) \quad \text { and } \quad\langle S\rangle_{\infty}=\lim _{n \rightarrow \infty}\langle S\rangle_{n} .
$$

Let $f \geq 1$ be a given increasing function satisfying $\int_{0}^{\infty}[f(x)]^{-2} d x<\infty$. Then,
(i) On $\left\{\omega:\langle S(\omega)\rangle_{\infty}<\infty\right\} S_{n} \xrightarrow{\text { a.s. }} S$ for some random variable S
(ii) On $\left\{\omega:\langle S(\omega)\rangle_{\infty}=\infty\right\}, S_{n} / f\left(\langle S\rangle_{n}\right) \xrightarrow{\text { a.s. }} 0$

Theorem 22 (Strong Law of Large Numbers) Let X_{1}, X_{2}, \cdots be i.i.d. with $\mathbb{E}\left(X_{1}\right)=\mu$ and $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}<\infty$ and define $S_{0}=0$ and $S_{n}=$ $\sum_{k=1}^{n}\left(X_{k}-\mu\right)$ for $n \geq 1$. Then $\frac{S_{n}}{n} \xrightarrow{\text { a.s. }} 0$.

Theorem 23 (Martingale Central Limit theorem) S_{0}, S_{1}, \cdots is a martingale with respect to $\underline{\mathcal{F}}$, with $S_{0}=0$ and $\mathbb{E}\left(\left(S_{n}\right)^{2}\right)<\infty$ for all n. Assume that $n^{-1}\langle S\rangle_{n} \xrightarrow{\mathbb{P}} \sigma^{2}>0$ and for all $\epsilon>0$

$$
\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left(\left(S_{k}-S_{k-1}\right)^{2} \mathbb{1}\left(\left(S_{k}-S_{k-1}\right)^{2}>\epsilon n\right)\right) \rightarrow 0
$$

Then, $\frac{1}{\sqrt{n \sigma^{2}}} S_{n} \xrightarrow{d} \mathcal{N}(0,1)$

Theorem 24 (Optional stopping I) Let S_{1}, S_{2}, \cdots be a martingale with respect to $\underline{\mathcal{F}}$. If T is an a.s. bounded stopping time for $\underline{\mathcal{F}}$ (i.e. $\mathbb{P}(T \leq a)=1$ for some $a \geq 0)$, then $\mathbb{E}\left(S_{T}\right)=\mathbb{E}\left(S_{1}\right)$.

Theorem 25 (Optional stopping II) Let S_{1}, S_{2}, \cdots be a martingale with respect to $\underline{\mathcal{F}}$ and T a stopping time for $\underline{\mathcal{F}}$. Then $\mathbb{E}\left(S_{T}\right)=\mathbb{E}\left(S_{1}\right)$, if the following conditions hold

- $\mathbb{P}(T<\infty)=1$,
- $\mathbb{E}\left(\left|S_{T}\right|\right)<\infty$,
- $\mathbb{E}\left(S_{n} \mathbb{1}(T>n)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 26 (Optional Stopping III) Let S_{1}, S_{2}, \cdots be a martingale with respect to $\underline{\mathcal{F}}$ and T a stopping time for $\underline{\mathcal{F}}$. Then $\mathbb{E}\left(S_{T}\right)=\mathbb{E}\left(S_{1}\right)$, if the following conditions hold

- $\mathbb{E}(T)<\infty$,
- $\mathbb{E}\left(\left|S_{n+1}-S_{n}\right| \mid \mathcal{F}_{n}\right) \leq K$ for all $n<T$ and some $K>0$

Wald's equation and identity: If X_{1}, X_{2}, \cdots are i.i.d. random variables with $\mathbb{E}\left(X_{1}\right)=\mu<\infty$ and $S_{n}=\sum_{k=1}^{n} X_{k}$ and T is a stopping time satisfying $\mathbb{E}(T)<\infty$, then $\mathbb{E}\left(S_{T}\right)=\mu \mathbb{E}(T)$.
If in addition there exists a $h>0$ such that $M(t)=\mathbb{E}\left(e^{t X_{1}}\right)<\infty$ for all $|t|<h$ and $M(t)>1$ and $\left|S_{n}\right|<C$ for some constant $C>0$ and all $n \leq T$, then $\mathbb{E}\left(e^{t S_{T}}[M(t)]^{-T}\right)=1$.

