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Permissible tools: pen, paper and attached �cheat-sheet�

5 problems. Maximum of 60 points

A B C D E

Needed points 50 45 40 35 30

Partial answers might be worth points, even if you cannot �nish an answer!

You are allowed to use results from the �cheat sheet� without proof, unless

the proof is explicitly asked for in the question. You may also use other

results discussed in the lectures or in the course material, such as the Borel-

Cantelli Lemma's. If you use such a result refer to it by stating the theorem

you are using or by referring to its proper name (e.g. Fatou's lemma), and

explicitly check whether the conditions of the theorem are satis�ed.

Throughout the exam N is the set of strictly positive integers and all limits

are for n→∞.

NOTE: The examiner expects that subproblems marked with a ∗ might

require more thought than other exercises and may be left for the end, if

time permits
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Problem 1

(a) Let A be a collection of subsets of a sample space Ω. What is the

de�nition of the σ-�eld generated by A? (3p)

(b) Let A and B be two subsets of Ω, that satisfy A ∩ B 6= ∅, A ∪ B 6= Ω,
A ∩ B 6= A and A ∩ B 6= B (i.e. A and B are overlapping, do not �ll up Ω
and neither A nor B is fully contained in the other set). Provide a partition

P of Ω, such that the σ-�eld generated by A and B is the same as the σ-�eld
generated by P. (4p)

Hint: Make a picture.

(c∗) Let A and B be as is part b). Let FA be a σ-�eld that contains A, but
does not contain B and let FB be a σ-�eld that contains B, but does not
contain A. Show that the σ-�eld generated by A and B necessarily contains

at least one element that is neither in FA nor in FB. (5p)

Hint: Assume that all elements of the σ-�eld generated by A and B are in

FA or in FB (or in both) and deduce a contradiction.
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Problem 2

Let X be geometrically distributed with parameter p ∈ (0, 1), that is

P(X = k) = p(1− p)k−1, for k ∈ N

and P(X = k) = 0 if k 6∈ N.

a) Show that the probability generating function g(s) = E[sX ] of X for

s ∈ [0, 1] is given by

g(s) =
ps

1− (1− p)s
.

(2p)

For i ∈ N and j ∈ N let Xi,j be independent and identically distributed

random variables all distributed as X. Set Z1 = X and de�ne inductively

Zn+1 =
∑Zn

j=1Xn,j . De�ne gn = E[sZn ] for n ∈ N and s ∈ [0, 1].

b) Show that gn+1(s) = gn(g(s)), and use that to prove that

gn(s) =
pns

1− (1− pn)s
, for s ∈ [0, 1] and n ∈ N.

(4p)

Remark: In what follows you may extend the domain of gn(s) without further
proof to s ∈ [0, 1/(1− pn)). So,

gn(s) = E[sZn ] =
pns

1− (1− pn)s
for s ∈ [0, 1/(1− pn))

and that

ψn(t) = E[etZn ] = gn(et) for t < − log(1− pn) = | log(1− pn)|.

c*) Show that pnZn converges to an exponentially distributed random vari-

able with expectation 1. (6p)
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Problem 3

Let A1, A2, · · · be independent events on the probability space (Ω,F ,P) and
de�ne

A := ∩∞n=1 ∪∞m=n Am.

That is, the Ai's happen in�nitely often.

a) Prove (a special case of) the �rst Borel-Cantelli Lemma:

∞∑
i=1

P(Ai) <∞

implies P(A) = 0. (3p)

b) Prove the second Borel-Cantelli Lemma:

∞∑
i=1

P(Ai) =∞

implies P(A) = 1. (3p)

c) Let X1, X2, · · · be independent random variables. Show that Xn
a.s.→ 0 if

and only if
∑∞

i=1 P(|Xi| > 1/k) <∞ for all k ∈ N. (6p)

Hint: You may use without proof that

{Xn 6→ 0} = ∪∞k=1 ∩∞N=1 ∪∞n=N{(|Xi| > 1/k}).
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Problem 4

Let X1, X2, · · · be a sequence of independent and identically distributed

random variables with E[X1] = 1, P(X1 = 1) < 1 and P(X1 > ε) = 1 for

some ε > 0. For n ∈ N let Fn be the σ-�eld generated by X1, X2, · · · , Xn

and F the corresponding �ltration.

a) For n ∈ N de�ne Yn =
∏n
k=1Xk. Show that Y1, Y2, · · · is a martingale

with respect to F . (4p)

b) Show that 1
n

∑n
i=1 log(Xi) converges almost surely to a non-positive con-

stant. (4p)

Remark: It can be shown (and used without proof in part c, if needed) that
1
n

∑n
i=1 log(Xi) converges to a strictly negative constant.

c) Show that Yn converges almost surely to 0. (4p)
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Problem 5

Let X1, X2, · · · be independent and identically distributed random variables

with

P(X1 = 1) = P(X1 = −1) = 1/2.

Let F be the �ltration generated by those random variables. De�ne S0 = 0
and Sn =

∑n
k=1Xk for n ∈ N. Let a, b ∈ N. Let

T−a = inf{k ∈ N;Sk = −a} and Tb = inf{k ∈ N;Sk = b},

be the hitting times of respectively −a and b. De�ne T = min(T−a, Tb).

a) Compute p = P(T−a = T ). (4p)

b) Show that Yn = (Sn)2 − n is an F-martingale and show that E[T ] = ab.
(4p)

c*) Compute E[TST ]. (4p)

Hint: Find a suitable martingale. You might compute E[(Sn+1)
3|Fn], to get

inspiration on which martingale would be suitable.

Good Luck!
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Reminder

σ-algebras, probability measures and expectation

De�nition 1 The Borel σ-algebra on R, is the smallest σ-algebra generated

by the open subsets of R. This de�nition can be extended to Rd for d ≥ 1.

De�nition 2

lim sup
n→∞

An := ∩∞n=1 ∪∞m=n Am

lim inf
n→∞

An := ∪∞n=1 ∩∞m=n Am

Proposition 3 A random variable X is F-measurable if and only if

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} belongs to F .

De�nition 4 The distribution measure µX of the random variable X is the

probability measure on (R,B) de�ned by µX(B) = P(X ∈ B) for Borel sets

B ∈ B, where B is the Borel σ-algebra.

Proposition 5 If the σ-algebra A is generated by a �nite partition P. Then
the function Y is A measurable if and only if Y is constant on each element

of P.

Lemma 6 If X,Y satisfy min(E(X+),E(X−)) <∞, then

(i) E(aX + bY ) = aE(X) + bE(Y ) (linearity)

(ii) E(X) ≤ E(Y ) if X ≤ Y a.s. (monotonicity)

De�nition 7 Let P = {A1, · · · , An} be a �nite partition, which generates

the σ-algebra A ⊂ F , then E(X|A)(ω) =
∑n

i=1 E(X|Ai)11(ω ∈ Ai) for ω ∈ Ω

Lemma 8 (Jensen's inequality) We have E(φ(X)) ≥ φ(E(X)) for con-

vex functions φ.
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Characteristic functions

De�nition 9 the Characteristic function of a random variable X is the

function ϕ : R → C, de�ned by ϕX(t) = E(eitX) = E(cos[tX]) + iE(sin[tx])
where i =

√
−1.

Properties of ϕX :

� ϕX(0) = 1

� |ϕX(t)| ≤ 1

� ϕX(−t) = ϕX(t)

� If a, b ∈ R and Y = aX + b then ϕY (t) = eitbϕX(at)

� If the random variables X and Y are independent, then ϕX+Y (t) =
ϕX(t)ϕY (t)

� ϕX is real if and only if X and −X have the same distribution, (X is

symmetric)

Theorem 10 Let X be a random variable with distribution function F and

characteristic function ϕ. If F is continuous in both a and b, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt

special cases:

� If
∫
R |ϕ(t)|dt <∞, then X has a continuous distribution with density

f(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt

� If the distribution of X is discrete, then

P(X = x) = lim
T→∞

1

2T

∫ T

−T
e−itxϕ(t)dt

Theorem 11 Let ϕ(k)(·) be the k-th complex derivative of ϕ.

� If ϕ
(k)
X (0) exists then E(|Xk|) <∞ if k is even and E(|Xk−1|) <∞ if

k is odd

� if E(|Xk|) < ∞ then ϕX(t) =
∑k

j=0
E(Xj)
j! (it)j + o(tk), where f(x) =

o(x) if f(x)/x→ 0 for x→ 0
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Some useful results for convergence results

Chebychev's inequality: P(|X| > x) ≤ E(X2)
x2

Markov inequality: P(|X| > x) ≤ E(|X|r)
xr

Hölder's inequality: For p, q > 1 such that 1/p+ 1/q = 1 we have

E(|XY |) ≤ [E(|X|p)]1/p[E(|X|q)]1/q

Minkovski's inequality: For r ≥ 1 we have

[E(|X + Y |r)]1/r ≤ [E(|X|r)]1/r + [E(|X|r)]1/r

Lemma 12 (Fatou's Lemma) Let X1, X2, · · · be non-negative random vari-

ables, then E(lim inf Xn) ≤ lim inf E(Xn).

De�nition 13 (Tail events) If X1, X2, · · · are random variables on (Ω,F ,P)
and Hn = σ(Xn+1, Xn+2, · · · ) is the smallest σ-algebra in which all random

variables Xn+1, Xn+2, · · · are measurable, then H∞ := ∩nHn is called the

tail σ-algebra, and events contained in it are tail events.

Theorem 14 (Kolmogorov's zero-one law) If X1, X2, · · · are indepen-

dent, then all tail events H ⊂ H∞ satisfy either P(H) = 1 or P(H) = 0

De�nition 15 (Uniform integrability) A sequence of r.v. X1, X2, · · · is
uniformly integrable if

sup
n≥1

E(|Xn|11(|Xn| > a))→ 0 as a→∞

Theorem 16 Let X and X1, X2, · · · be random variables such that Xn
P→ X

then the following statements are equivalent

1. X1, X2, · · · is uniformly integrable

2. E(|Xn|) <∞ for all n, E(|X|) <∞ and Xn
1→ X

3. E(|Xn|) <∞ and E(|Xn|)→ E(|X|) <∞
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Martingales

Some Properties of martingales: Let S1, S2, · · · be a martingale with

respect to F = (F0,F1, · · · ).

� E(Sn+m|Fn) = Sn

� E(Sn) = E(S1)

� E((Sn)2) is non decreasing

Theorem 17 (Doob decomposition) A F-submartingale Y0, Y1, · · · with
�nite means may be expressed in the form Yn = Mn +Sn, where M1,M2, · · ·
is a F-martingale and Sn is Fn−1 measurable for all n. This decomposition

is unique.

Lemma 18 (Doob-Kolmogorov inequality) If S1, S2, · · · is a martin-

gale with respect to F , then for all ε > 0 we have P
(

max
1≤k≤n

|Sk| ≥ ε
)
≤

ε−2E((Sn)2).

Theorem 19 (Martingale convergence theorem) If S1, S2, · · · is a mar-

tingale with respect to F and E((Sn)2)↗M <∞, then there exists a random

variable S such that Sn
a.s.→ S.

De�nition 20 (Cauchy sequence) A sequence of real numbers x1, x2, · · ·
is a Cauchy sequence if for all ε > 0 there exists an N such that for all

n ≥ m ≥ N , we have |xn − xm| < ε.
We know that a sequence is convergent if and only if it is a Cauchy sequence.

Theorem 21 Let S0, S1, · · · be a martingale with respect to F such that

S0 = 0 and E((Sn)2) <∞ for all n. De�ne

〈S〉n =

n∑
k=1

E((Sk − Sk−1)2|Fk−1) and 〈S〉∞ = lim
n→∞

〈S〉n.

Let f ≥ 1 be a given increasing function satisfying
∫∞
0 [f(x)]−2dx < ∞.

Then,

(i) On {ω : 〈S(ω)〉∞ <∞} Sn
a.s.→ S for some random variable S

(ii) On {ω : 〈S(ω)〉∞ =∞}, Sn/f(〈S〉n)
a.s.→ 0

Theorem 22 (Strong Law of Large Numbers) Let X1, X2, · · · be i.i.d.
with E(X1) = µ and V ar(X1) = σ2 < ∞ and de�ne S0 = 0 and Sn =∑n

k=1(Xk − µ) for n ≥ 1. Then Sn
n

a.s.→ 0.
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Theorem 23 (Martingale Central Limit theorem) S0, S1, · · · is a mar-

tingale with respect to F , with S0 = 0 and E((Sn)2) <∞ for all n. Assume

that n−1〈S〉n
P→ σ2 > 0 and for all ε > 0

1

n

n∑
k=1

E((Sk − Sk−1)211((Sk − Sk−1)2 > εn))→ 0.

Then, 1√
nσ2

Sn
d→ N (0, 1)

Theorem 24 (Optional stopping I) Let S1, S2, · · · be a martingale with

respect to F . If T is an a.s. bounded stopping time for F (i.e. P(T ≤ a) = 1
for some a ≥ 0), then E(ST ) = E(S1).

Theorem 25 (Optional stopping II) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the
following conditions hold

� P(T <∞) = 1,

� E(|ST |) <∞,

� E(Sn11(T > n))→ 0 as n→∞.

Theorem 26 (Optional Stopping III) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the fol-

lowing conditions hold

� E(T ) <∞,

� E(|Sn+1 − Sn||Fn) ≤ K for all n < T and some K > 0

Wald's equation and identity: If X1, X2, · · · are i.i.d. random variables

with E(X1) = µ <∞ and Sn =
∑n

k=1Xk and T is a stopping time satisfying

E(T ) <∞, then E(ST ) = µE(T ).
If in addition there exists a h > 0 such that M(t) = E(etX1) < ∞ for all

|t| < h and M(t) > 1 and |Sn| < C for some constant C > 0 and all n ≤ T ,
then E(etST [M(t)]−T ) = 1.


