
Solutions exam Probability III

October, 2021

Problem 1
(a) Let A be a collection of subsets of a sample space Ω. What is the
de�nition of the σ-�eld generated by A? (3p)
Solution: The σ-�eld generated by A is the smallest σ-�eld that contains
all elements of A.

(b) Let A and B be two subsets of Ω, that satisfy A ∩ B 6= ∅, A ∪ B 6= Ω,
A ∩ B 6= A and A ∩ B 6= B (i.e. A and B are overlapping, do not �ll up Ω
and neither A nor B is fully contained in the other set). Provide a partition
P of Ω, such that the σ-�eld generated by A and B is the same as the σ-�eld
generated by P . (4p)
Solution: The partition consists of

� P1 = A ∩B,

� P2 = A ∩BC ,

� P3 = AC ∩B and

� P4 = AC ∩BC .

This is a partition because P1 ∪ P2 = A and P3 ∪ P4 = AC . So, ∪4i=1Pi = Ω
and (P1 ∪ P2) ∩ (P3 ∪ P4) = ∅. Finally P1, P3 ⊂ B and P2, P4 ⊂ BC . So,
P1 ∩ P2 = ∅ and P3 ∩ P4 = ∅.
None of the elements of the partition is empty, because by assumption P1,
P2 and P3 are not empty, while P4 6= ∅, because

PC
4 = (AC ∩BC)C = A ∪B 6= Ω = ∅C .

Since complements, intersections and unions of elements of a σ-�eld are also
in the σ-�eld. All elements of the partition are in the smallest σ-�eld con-
taining A and B. While A = P1 ∪ P2 and B = P1 ∪ P3 are in the smallest σ
algebra generated by the partition.
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(c) Let A and B be as is part b). Let FA be a σ-�eld that contains A, but
does not contain B and let FB be a σ-�eld that contains B, but does not
contain A. Show that the σ-�eld generated by A and B necessarily contains
at least one element that is neither in FA nor in FB. (5p)
Solution: Assume �rst that P1, P2, P3 and P4 are all in FA ∪ FB and that
P1 = A ∩B ∈ FA. (If P1 6∈ FA Then the roles of A and B (and therefore P2

and P3) can be interchanged

� P3 = AC ∩ B 6∈ FA, because P3 ∈ FA would (by de�nition of a σ-�eld
and P1 ∈ FA) imply P1 ∪ P3 ∈ FA. However, P1 ∪ P3 = B 6∈ FA by
assumption. So P3 ∈ FB.

� Similarly, P3 ∈ FB implies P4 = AC ∩ BC 6∈ FB, because P4 ∪ P3 =
AC 6∈ FB, because A 6∈ FB by assumption. So P4 ∈ FA.

� P4 ∈ FA implies P4 ∪A ∈ FA. Since P4 ∪A = P1 ∪P2 ∪P4 = (P3)
C we

have P3 ∈ FA. Which contradicts the �rst bulletpoint.

2



Problem 2
Let X be geometrically distributed with parameter p ∈ (0, 1), that is

P(X = k) = p(1− p)k−1, for k ∈ N

and P(X = k) = 0 if k 6∈ N.
a) Show that the probability generating function g(s) = E[sX ] of X for
s ∈ [0, 1] is given by g(s) = ps

1−(1−p)s . (2p)
Solution:
g(s) =

∑∞
k=1 P(X = k)sk =

∑∞
k=1 p(1 − p)k−1sk = ps

∑∞
k=1[(1 − p)s]k−1 =

ps
1−(1−p)s .

For i ∈ N and j ∈ N let Xi,j be independent and identically distributed
random variables all distributed as X. Set Z1 = X and de�ne inductively
Zn+1 =

∑Zn

j=1Xn,j. De�ne gn = E[sZn ] for n ∈ N and s ∈ [0, 1].
b) Show that gn+1(s) = gn(g(s)), and use that to prove that

gn(s) =
pns

1− (1− pn)s
, for s ∈ [0, 1] and n ∈ N.

(4p)

Solution:

gn+1(s) = E[sZn+1 ] = E[E[s
∑Zn

j=1Xn,j ]|Zn] = E[
Zn∏
j=1

E[sXn,j |Zn]],

where we have used independence of theXn,j. Because allXn,j are distributed
as X, we further obtain

gn+1(s) = E[
Zn∏
j=1

E[sXn,j |Zn]] = E[
Zn∏
j=1

E[sX ]] = E[g(s)Zn ] = gn(g(s)).

We use induction to show gn(s) = pns
1−(1−pn)s . It is easy to see that gn(s) =

pns
1−(1−pn)s for n = 1 by a. If gn(s) = pns

1−(1−pn)s then

gn+1(s) = gn(g(s)) =
png(s)

1− (1− pn)g(s)
=

pnps/[1− (1− p)s]
1− (1− pn)ps/[1− (1− p)s]

=
pn+1s

[1− (1− p)s]− (p− pn+1)s
=

pn+1s

1− (1− pn+1)s
.

And the proof is complete.
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Remark: In what follows you may extend the domain of gn(s) without further
proof to s ∈ [0, 1/(1− pn)). So,

gn(s) = E[sZn ] =
pns

1− (1− pn)s
for s ∈ [0, 1/(1− pn))

and that

ψn(t) = E[etZn ] = gn(et) for t < − log(1− pn) = | log(1− pn)|.

c) Show that pnZn converges in distribution to an exponentially distributed
random variable with expectation 1. (6p)
Solution: We use that the moment generating function of pnZn is equal to
ψn(pnt) = gn(ep

nt), for t < p−n| log(1− pn)]|.
There are many ways to continue and here is one:
We de�ne

h(t) = et − (1 + t).

Then, for t < p−n| log(1− pn)]| we have

ψn(pnt) = gn(pnet) =
pnetp

n

1− (1− pn)etpn
=

pn[1 + tpn + h(tpn)]

1− (1− pn)[1 + tpn + h(tpn)]

=
pn[1 + tpn + h(tpn)]

(1− t)pn + tp2n + (1− pn)h(tpn)
=

1 + tpn + h(tpn)

(1− t) + tpn − (1− pn)h(tpn)/pn
.

We note that as n→∞, we have pn → 0 and tpn → 0. Because h(x)/x→ 0
as x → 0 we have also h(tpn)/pn = th(tpn)/[tpn] → 0 as n → ∞. Further-
more, p−n| log(1− pn)]| → 1 as n→∞, because log(1− x)/x→ 1 as x→ 0.
This leads to ψn(pnt)→ 1/(1− t), for t ∈ (−∞, 1) (which contains an open
interval around 0). The function 1/(1− t) is the moment generating function
for an exponentially distributed random variable with expectation 1, so pnZn
converges in distribution to an exponential distributed random variable with
expectation 1.
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Problem 3
Let A1, A2, · · · be independent events on the probability space (Ω,F ,P) and
de�ne

A := ∩∞n=1 ∪∞m=n Am.

That is, the Ai's happen in�nitely often.
a) Prove (a special case of) the �rst Borel-Cantelli Lemma:

∞∑
i=1

P(Ai) <∞

implies P(A) = 0. (3p)
Solution: For every i ∈ N, we have A ⊂ ∪∞m=iAm and therefore we have for
every i ∈ N,

P(A) = P(∩∞n=1 ∪∞m=n Am) ≤ P(∪∞m=iAm) ≤
∞∑
m=i

P(Am),

which is decreasing in i and converges to 0 because
∑∞

i=0 P(Ai) <∞.

b) Prove the second Borel-Cantelli Lemma:

∞∑
i=1

P(Ai) =∞

implies P(A) = 1. (3p)
Solution: Note that

∑∞
n=0 P(An) = ∞ implies

∑∞
n=m P(An) = ∞ for all

m ≥ 0. Also note that Ac = ∪∞n=1 ∩∞m=n A
c
m.

By e−x ≥ 1− x for x ≥ 0 and independence, we obtain

P(∩∞m=nA
c
m) =

∞∏
m=n

[1− P(Am)] ≤
∞∏
m=n

exp[−P(Am)] = exp[−
∞∑
m=n

P(Am)] = 0

by
∑∞

n=0 P(An) =∞. So,

P(Ac) = P(∪∞n=1 ∩∞m=n A
c
m) ≤

∞∑
n=1

P(∩∞m=nA
c
m) = 0.
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c) Let X1, X2, · · · be independent random variables. Show that Xn
a.s.→ 0 if

and only if
∑∞

i=1 P(|Xi| > 1/k) <∞ for all k ∈ N. (6p)
Hint: You may use without proof that

{Xn 6→ 0} = ∪∞k=1 ∩∞N=1 ∪∞n=N{(|Xn| > 1/k}.

Solution: De�ne An(1/k) := {|Xn| > 1/k}. By the hint

P(Xn 6→ 0) = P(∪∞k=1 ∩∞N=1 ∪∞n=NAn(1/k)) ≤
∞∑
k=1

P(∩∞N=1 ∪∞n=N An(1/k)).

From part a) we know that if
∑∞

i=1 P(|Xi| > 1/k) < ∞ for all k ∈ N, then
P(∩∞N=1 ∪∞n=N An(1/k)) = 0 for all k ∈ N. Therefore,

P(Xn 6→ 0) ≤
∞∑
k=1

0 = 0.

If on the other hand
∞∑
i=1

P(|Xi| > 1/k0) =∞,

where k0 ∈ N we have by part b) that

P(for all n ∈ N there exists m ≥ n such that |Xm| > 1/k0) = 1.

That is, P(Xn 6→ 0) = 1.
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Problem 4 Let X1, X2, · · · be a sequence of independent and identically
distributed random variables with E[X1] = 1, P(X1 = 1) < 1 and P(X1 >
ε) = 1 for some ε > 0. For n ∈ N let Fn be the σ-�eld generated by
X1, X2, · · · , Xn and F the corresponding �ltration.
a) For n ∈ N de�ne Yn =

∏n
k=1Xk. Show that Y1, Y2, · · · is a martingale

with respect to F . (4p)
Solution: Yn is by de�nition measurable with respect to Fn.

E[Yn+1|Fn] = E[YnXn+1|Fn] = YnE[Xn+1|Fn] = Yn.

It follows also that

E[Yn+1] = E[E[Yn+1|Fn]] = E[Yn] = · · · = E[Y1] = 1 <∞.

b) Show that 1
n

∑n
i=1 log(Xi) converges almost surely to a non-positive con-

stant. (4p)
Solution: The logarithm is a concave function. So, By Jensen's inequality

E[log(X1)] ≤ log(E[X1]) = log(1) = 0.

Also note that (log x)2 < x for all x > x0 for some x0 > 0 (x0 = 1 does the
job). So,

E[(log(X1))
2] = E[(log(X1))

211(X1 ≤ x0)] + E[(log(X1))
211(X1 > x0)]

≤ E[(log(X1))
211(X1 ≤ x0)]+E[X111(X1 > x0)] ≤ max

ε≤x≤x0
(log x)2+E[X1] <∞.

So we can use the strong law of large numbers (THM 22 of cheat sheet) to
show that

1

n

n∑
i=1

log(Xi)
a.s.→ E[log[Xi] ≤ 0.
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Remark: It can be shown (and used without proof, if needed) that 1
n

∑n
i=1 log(Xi)

converges to a strictly negative constant.
c) Show that Yn converges almost surely to 0.
Solution:

Yn =
n∏
i=1

Xi =
n∏
i=1

elog(Xi) = e
∑n

i=1 log(Xi).

So, if
∑n

i=1 log(Xi)
a.s.→ −∞ we are done. By 1

n

∑n
i=1 log(Xi)

a.s.→ E[log[Xi] < 0,
this indeed holds. (4p)
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Problem 5
Let X1, X2, · · · be independent and identically distributed random variables
with

P(X1 = 1) = P(X1 = −1) = 1/2.

Let F be the �ltration generated by those random variables. De�ne S0 = 0
and Sn =

∑n
k=1 Sk for n ∈ N. Let a, b ∈ N. Let

T−a = inf{k ∈ N;Sk = −a} and Tb = inf{k ∈ N;Sk = b},

be the hitting times of respectively −a and b. De�ne T = min(T−a, Tb).
a) Compute p = P(T−a = T ). (4p)
Solution: Sn is Fn measurable by de�nition. E[|Sn|] ≤ n <∞ for all n and
E[Sn+1|Fn] = E[Sn +Xn+1|Fn] = Sn. So, Sn is a martingale.
Furthermore let

K = min{k ∈ N;T(a+b)(k−1)+1 = T(a+b)(k−1)+2 = · · · = T(a+b)k = 1}

be the smallest positive integer for which T(a+b)(k−1)+1 = T(a+b)(k−1)+2 = · · · =
T(a+b)k = 1. Because a+ b subsequent +1's de�nitely brings you outside the
strip (a, b) (if you were not already outside it), T ≤ K(a + b). It is trivial
to see that K is geometrically distributed with parameter 2−(a+b) ∈ (0, 1).
Therefore K is �nite with probability 1 and has �nite expectation and as
consequence T is �nite with probability 1 and has �nite expectation. We can
use Theorem 25 and 26 of the cheat sheet (noting that Sn is bounded for
n ≤ T ), to obtain that

0 = E[S1] = E[ST ] = −aP(T−a = T ) + b(1− P(T−a = T )).

Therefore, p = P(T−a = T ) = b/(a+ b).

b) Show that Yn = (Sn)2 − n is an F -martingale and show that E[T ] = ab.
(4p)
Solution: Yn is Fn measurable, because Sn is. E[|Yn|] ≤ n2 + n < ∞ and
with

E[Yn+1|Fn] = E[(Sn+Xn+1)
2−(n+1)|Fn] = (S2

n)−(n+1)+2SnE[Xn+1|Fn]+E[(Xn+1)
2|Fn]

= (Sn)2 − (n+ 1) + 2Sn × 0 + 1 = (Sn)2 − n = Yn.

Using Theorem 25 of the cheat sheet we obtain

0 = E[Y1] = E[YT ] = pa2 + (1− p)b2 − E[T ] = ab− E[T ]

and the statement of the question follows.
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c) Compute E[TST ]. (4p)
Hint: Find a suitable martingale. You might consider E[(Sn+1)

3|Fn], to get
inspiration on which martingale would be suitable.
Solution: Follow the hint:

E[(Sn+1)
3|Fn] = E[(Sn +Xn+1)

3|Fn]

= (Sn)3 + 3(Sn)2E[Xn+1] + 3SnE[(Xn+1)
2] + E[(Xn+1)

3] = (Sn)3 + 3Sn.

It follows that Zn = (Sn)3 − 3nSn satis�es the martingale property. Also
E[|Zn|] ≤ n3 + 3n2. The conditions of Theorem 25 are easily checked and we
otbain

0 = E[Z1] = E[ZT ] = −pa3 + (1− p)b3 − 3E[TST ]

= ba
b2 − a2

b+ a
− 3E[TST ] = ab(b− a)− 3E[TST ].

So, E[TST ] = ab(b− a)/3.
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