Solutions exam Probability III

October, 2021

Problem 1
(a) Let A be a collection of subsets of a sample space 2. What is the
definition of the o-field generated by A? (3p)

Solution: The o-field generated by A is the smallest o-field that contains
all elements of A.

(b) Let A and B be two subsets of €, that satisfy AN B # (), AU B # Q,
ANB # Aand AN B # B (i.e. A and B are overlapping, do not fill up Q
and neither A nor B is fully contained in the other set). Provide a partition
P of 2, such that the o-field generated by A and B is the same as the o-field
generated by P. (4p)
Solution: The partition consists of

e P =ANBKB,

o P,=ANDBC,

e P, = AN DB and
o P,=AYNBC.

This is a partition because P, U P, = A and P;U Py = A®. So, Ul P = Q
and (P, U P) N (P3U P,) = 0. Finally P, P3 C B and P, P, C B®. So,
PlﬂpgzﬁandP30P4:(Z).

None of the elements of the partition is empty, because by assumption P,
P, and Py are not empty, while Py # (), because

P¢ = (A°NBYYY =AUB#Q=10°.

Since complements, intersections and unions of elements of a o-field are also
in the o-field. All elements of the partition are in the smallest o-field con-
taining A and B. While A = P, U P, and B = P, U P5 are in the smallest o
algebra generated by the partition.



(c) Let A and B be as is part b). Let F4 be a o-field that contains A, but
does not contain B and let Fg be a o-field that contains B, but does not
contain A. Show that the o-field generated by A and B necessarily contains
at least one element that is neither in F,4 nor in Fjg. (5p)
Solution: Assume first that P, P, P3 and P, are all in F4 U Fp and that
P =ANB € Fy. (If P, ¢ Fa Then the roles of A and B (and therefore P,
and P3) can be interchanged

e P = AN B ¢ F4, because P; € F4 would (by definition of a o-field
and P, € Fu) imply P, U P; € F4. However, P, U P; = B & F4 by
assumption. So P3 € Fpg.

e Similarly, P; € Fp implies P, = A N B® & Fg, because Py U Py =
A€ & Fg, because A € Fp by assumption. So Py € Fa.

e Py € F,implies PLUA € Fu. Since PLUA =P UP,UP, = (P3)¢ we
have P; € F4. Which contradicts the first bulletpoint.



Problem 2
Let X be geometrically distributed with parameter p € (0, 1), that is

P(X =k)=p(1-p)*"',  forkeN

and P(X =k)=0if k ¢ N.

a) Show that the probability generating function g(s) = E[s*] of X for
s € [0,1] is given by g(s) = Thos (2p)
Solution:

ols) = TP B(X = B)s* = T, plL - p)* st = ps TR - p)slt =

1—-(1-p)s*

For « € N and j € N let X;; be independent and identically distributed

random variables all distributed as X. Set Z; = X and define inductively
i1 = Z , X,;. Define g, = E[s?"] for n € N and s € [0, 1].

b) Show that 9n+1(8) = gn(g(s)), and use that to prove that

gn(S) = ﬁ, for s € [07 1] and n € N.
(4p)
Solution:
z Zn
Gni1(s) = E[s"+] = E[E[s>=1 %3] |Z,] = B[] [ E[s*|Z.],
j=1

where we have used independence of the X, ;. Because all X, ; are distributed
as X, we further obtain

G (s HE X0 | Z,]] HE ()] = gn(g(s)).

We use induction to show g,(s) = 1= é’ispn)s. It is easy to see that g,(s) =
— (1 —ys forn=1Dby a. If In(8) = 1= (};ijon)s then
p"g(s) p"ps/[1 = (1~ p)s]
In+1{S) = gn\g\S)) = =
O Z D T T )~ T (- e/ (0
p anrlS

T -p)s] - <p p)s  1— (1—prt)s

And the proof is complete.



Remark: In what follows you may extend the domain of g, (s) without further
proof to s € [0,1/(1 —p™)). So,

p"s

gn(s) = E[s""] = T—(—ps

for s € [0,1/(1 —p"))

Un(t) = E[e"] = ga(e')  for t < —log(1—p") = [log(1 —p")|.

c) Show that p"Z, converges in distribution to an exponentially distributed
random variable with expectation 1. (6p)
Solution: We use that the moment generating function of p"Z, is equal to
Un(p"t) = gn(e”"), for t < p~[log(1 — p")]|.
There are many ways to continue and here is one:
We define

h(t) =€ — (1 +1¢).

Then, for t < p~|log(1 — p™)|| we have

n  tp™ 1 T "
e p"[1+ tp™ + h(tp")]
n 1) = n net) = -
Unl"t) = nlP"e) = T T e~ TS (= g1 5 i + A

(1= t)p +tp> + (1 —p)h(tp") (1 —t) +tp — (1 —pm)h(tp™)/p

We note that as n — oo, we have p" — 0 and ¢p™ — 0. Because h(z)/z — 0
as x — 0 we have also h(tp™)/p" = th(tp™)/[tp"] — 0 as n — oo. Further-
more, p~"|log(1l —p")]| — 1 as n — oo, because log(1 —z)/x — 1 as x — 0.
This leads to ¥, (p"t) — 1/(1 —t), for t € (—oo, 1) (which contains an open
interval around 0). The function 1/(1—t) is the moment generating function
for an exponentially distributed random variable with expectation 1, so p"Z,
converges in distribution to an exponential distributed random variable with
expectation 1.



Problem 3
Let Ay, Ay, -+ be independent events on the probability space (2, F,P) and
define

A=0%, U% A

That is, the A;’s happen infinitely often.
a) Prove (a special case of) the first Borel-Cantelli Lemma:

iIP’(AZ-) < 00
implies P(A) = 0. (3p)

Solution: For every i € N, we have A C UyY_, A, and therefore we have for
every i € N,

P(A) = P(N32, U, Am) S P(UR_A,) <) P(A,),

which is decreasing in i and converges to 0 because » .-, P(A;) < co.

b) Prove the second Borel-Cantelli Lemma:

Z]P’(Ai) = 0

implies P(A) = 1. (3p)
Solution: Note that Y~ P(A,) = oo implies > ° P(A4,) = oo for all
m > 0. Also note that A° = U2, NX_ AC .

By e™® > 1 — x for x > 0 and independence, we obtain

P, 4) = [T 11— P(An)] < J] expl=P(An)] = exp[— 3 P(4,,)] =0

by > P(A,) = oo. So,

P(A%) = P(U3Z, Ny, AS) <) (N, AL) = 0.

n= m=n--m

n=1



c) Let X1, X5, -+ be independent random variables. Show that X,, 3 0 if
and only if > 07 P(|X;| > 1/k) < oo for all k € N. (6p)
Hint: You may use without proof that

{Xo A 0 = UpZ) Xy UnZn (1 X > 1/}

Solution: Define A, (1/k) := {|X,| > 1/k}. By the hint
P(X, £ 0) = (U MRy Unly An(1/K)) < D PO, Uty An(1/K)).
k=1

From part a) we know that if Y °, P(|X;| > 1/k) < oo for all k € N, then
PN, U2 v A, (1/k)) = 0 for all k € N. Therefore,

P(X,, + 0) gio

k=1
If on the other hand -
D P(Xi| > 1/ko) = o0
i=1
where ko € N we have by part b) that
P(for all n € N there exists m > n such that |X,,| > 1/kq) =

That is, P(X,, /4 0) = 1.



Problem 4 Let X;, X5,--- be a sequence of independent and identically
distributed random variables with E[X;] = 1, P(X; = 1) < 1 and P(X; >
€) = 1 for some ¢ > 0. For n € N let F,, be the o-field generated by
X1, Xy, -+, X, and F the corresponding filtration.

a) For n € N define Y,, = [];_; Xi. Show that Y7,Y5,--- is a martingale
with respect to F. (4p)
Solution: Y, is by definition measurable with respect to F,.

E[Y, 1| Fn] = ElY, X1 | Fo] = VL E[X, 1] Fa] = Y.
It follows also that

ElYoi1] = EE[Yo[F)] =E[Y,] = =EM] =1 < .

b) Show that £ >  log(X;) converges almost surely to a non-positive con-
stant. (4p)
Solution: The logarithm is a concave function. So, By Jensen’s inequality

Ellog(X,)] < log(E[X,]) = log(1) = 0.

Also note that (logx)? < x for all x > x( for some x¢ > 0 (xo = 1 does the
job). So,

E[(log(X1))?] = E[(log(X1))*1(X; < 0)] + E[(log(X1))*1(X; > 20)]
< E[(log(X1))*1(X; < 20)]+E[X11(X; > 29)] < egﬂl%o(log 7)?+E[X;] < oo.

So we can use the strong law of large numbers (THM 22 of cheat sheet) to
show that

1 Z” s
n
=1



Remark: It can be shown (and used without proof, if needed) that = 3" | log(X;)
converges to a strictly negative constant.

c) Show that Y, converges almost surely to 0.

Solution:

Y, = HXi = H elo8(Xa) — p2lizilos(X)
i=1 i=1

So, if Y"1 log(X;) 3 —oco we are done. By 2 37 | log(X;) =¥ E[log[X;] < 0,
this indeed holds. (4p)



Problem 5
Let X1, X5, -+ be independent and identically distributed random variables
with

P(X;=1)=P(X; =-1)=1/2.
Let F be the filtration generated by those random variables. Define Sy = 0
and S, = > 7, Sk for n € N. Let a,b € N. Let

T_, =inf{k € N; Sy = —a} and T, =inf{k € N; S = b},

be the hitting times of respectively —a and b. Define T' = min(7_,, T).

a) Compute p=P(T_, =1T). (4p)
Solution: S, is F,, measurable by definition. E[|S,|] < n < oo for all n and
E[Sy+1|Fn] = E[S, + Xpi1]|Fn] = Sn- So, S, is a martingale.

Furthermore let

K = min{k € N; Tiart)k-1)+1 = Tatp)y(h—1)42 = =+ = Lotk = 1}

be the smallest positive integer for which T(,1p)k—1)41 = T{ast)(k—1)42 = "+ =
Tlatp)x = 1. Because a + b subsequent +1’s definitely brings you outside the
strip (a,b) (if you were not already outside it), T < K(a + b). It is trivial
to see that K is geometrically distributed with parameter 27(+% ¢ (0, 1).
Therefore K is finite with probability 1 and has finite expectation and as
consequence T is finite with probability 1 and has finite expectation. We can
use Theorem 25 and 26 of the cheat sheet (noting that S, is bounded for
n < T), to obtain that

0=E[S]=E[S7]| = —aP(T_,=T)+b(1 —P(T_, =T)).
Therefore, p=P(T_, =T) =b/(a +b).

b) Show that Y,, = (S,)? — n is an F-martingale and show that E[T] = ab.
(4p)

Solution: Y, is F, measurable, because S, is. E[|Y,|] < n? +n < oo and
with
ElYo1|Fn] = E[(Sn+Xn+l)2_(n+1)|]:n] = (S§>_(n+1)+25n]E[Xn+l“Fn}'f’]E[(Xn-&-l)z'fn}
= (S = (n+1)+28, x0+1=(S,) —n=Y,.
Using Theorem 25 of the cheat sheet we obtain
0 = E[Y1] = E[Y7] = pa® + (1 — p)b* — E[T] = ab — E[T]

and the statement of the question follows.
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c) Compute E[T'S7]. (4p)
Hint: Find a suitable martingale. You might consider E[(S,.1)3|F.], to get
inspiration on which martingale would be suitable.

Solution: Follow the hint:

E[(Sn+1)°[Ful = E[(Sn + Xp41)*| ]
= (Sn)s + 3<Sn)2E[Xn+l] + 3Sn]E[(Xn+1)2] + E[(Xn-i-l)g] = (Sn)3 + 3571'
It follows that Z, = (S,)® — 3nS,, satisfies the martingale property. Also

E[|Z,|] < n®+ 3n?. The conditions of Theorem 25 are easily checked and we
otbain

0 = E[Z)] = E[Z7] = —pa® + (1 — p)b® — 3E[T'Sy]
b? — a?

+a

= ba

So, E[T'Sy| = ab(b — a)/3.
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