Solutions exam Probability III

October, 2021

Problem 1

(a) Let \mathcal{A} be a collection of subsets of a sample space Ω. What is the definition of the σ-field generated by \mathcal{A} ?
Solution: The σ-field generated by \mathcal{A} is the smallest σ-field that contains all elements of \mathcal{A}.
(b) Let A and B be two subsets of Ω, that satisfy $A \cap B \neq \emptyset, A \cup B \neq \Omega$, $A \cap B \neq A$ and $A \cap B \neq B$ (i.e. A and B are overlapping, do not fill up Ω and neither A nor B is fully contained in the other set). Provide a partition \mathcal{P} of Ω, such that the σ-field generated by A and B is the same as the σ-field generated by \mathcal{P}.
Solution: The partition consists of

- $P_{1}=A \cap B$,
- $P_{2}=A \cap B^{C}$,
- $P_{3}=A^{C} \cap B$ and
- $P_{4}=A^{C} \cap B^{C}$.

This is a partition because $P_{1} \cup P_{2}=A$ and $P_{3} \cup P_{4}=A^{C}$. So, $\cup_{i=1}^{4} P_{i}=\Omega$ and $\left(P_{1} \cup P_{2}\right) \cap\left(P_{3} \cup P_{4}\right)=\emptyset$. Finally $P_{1}, P_{3} \subset B$ and $P_{2}, P_{4} \subset B^{C}$. So, $P_{1} \cap P_{2}=\emptyset$ and $P_{3} \cap P_{4}=\emptyset$.
None of the elements of the partition is empty, because by assumption P_{1}, P_{2} and P_{3} are not empty, while $P_{4} \neq \emptyset$, because

$$
P_{4}^{C}=\left(A^{C} \cap B^{C}\right)^{C}=A \cup B \neq \Omega=\emptyset^{C} .
$$

Since complements, intersections and unions of elements of a σ-field are also in the σ-field. All elements of the partition are in the smallest σ-field containing A and B. While $A=P_{1} \cup P_{2}$ and $B=P_{1} \cup P_{3}$ are in the smallest σ algebra generated by the partition.
(c) Let A and B be as is part b). Let \mathcal{F}_{A} be a σ-field that contains A, but does not contain B and let \mathcal{F}_{B} be a σ-field that contains B, but does not contain A. Show that the σ-field generated by A and B necessarily contains at least one element that is neither in \mathcal{F}_{A} nor in \mathcal{F}_{B}.
Solution: Assume first that P_{1}, P_{2}, P_{3} and P_{4} are all in $\mathcal{F}_{A} \cup \mathcal{F}_{B}$ and that $P_{1}=A \cap B \in \mathcal{F}_{A}$. (If $P_{1} \notin \mathcal{F}_{A}$ Then the roles of A and B (and therefore P_{2} and P_{3}) can be interchanged

- $P_{3}=A^{C} \cap B \notin \mathcal{F}_{A}$, because $P_{3} \in \mathcal{F}_{A}$ would (by definition of a σ-field and $P_{1} \in \mathcal{F}_{A}$) imply $P_{1} \cup P_{3} \in \mathcal{F}_{A}$. However, $P_{1} \cup P_{3}=B \notin \mathcal{F}_{A}$ by assumption. So $P_{3} \in \mathcal{F}_{B}$.
- Similarly, $P_{3} \in \mathcal{F}_{B}$ implies $P_{4}=A^{C} \cap B^{C} \notin \mathcal{F}_{B}$, because $P_{4} \cup P_{3}=$ $A^{C} \notin \mathcal{F}_{B}$, because $A \notin \mathcal{F}_{B}$ by assumption. So $P_{4} \in \mathcal{F}_{A}$.
- $P_{4} \in \mathcal{F}_{A}$ implies $P_{4} \cup A \in \mathcal{F}_{A}$. Since $P_{4} \cup A=P_{1} \cup P_{2} \cup P_{4}=\left(P_{3}\right)^{C}$ we have $P_{3} \in \mathcal{F}_{A}$. Which contradicts the first bulletpoint.

Problem 2

Let X be geometrically distributed with parameter $p \in(0,1)$, that is

$$
\mathbb{P}(X=k)=p(1-p)^{k-1}, \quad \text { for } k \in \mathbb{N}
$$

and $\mathbb{P}(X=k)=0$ if $k \notin \mathbb{N}$.
a) Show that the probability generating function $g(s)=\mathbb{E}\left[s^{X}\right]$ of X for $s \in[0,1]$ is given by $g(s)=\frac{p s}{1-(1-p) s}$.

Solution:

$g(s)=\sum_{k=1}^{\infty} \mathbb{P}(X=k) s^{k}=\sum_{k=1}^{\infty} p(1-p)^{k-1} s^{k}=p s \sum_{k=1}^{\infty}[(1-p) s]^{k-1}=$ $\frac{p s}{1-(1-p) s}$.

For $i \in \mathbb{N}$ and $j \in \mathbb{N}$ let $X_{i, j}$ be independent and identically distributed random variables all distributed as X. Set $Z_{1}=X$ and define inductively $Z_{n+1}=\sum_{j=1}^{Z_{n}} X_{n, j}$. Define $g_{n}=\mathbb{E}\left[s^{Z_{n}}\right]$ for $n \in \mathbb{N}$ and $s \in[0,1]$.
b) Show that $g_{n+1}(s)=g_{n}(g(s))$, and use that to prove that

$$
\begin{equation*}
g_{n}(s)=\frac{p^{n} s}{1-\left(1-p^{n}\right) s}, \quad \text { for } s \in[0,1] \text { and } n \in \mathbb{N} . \tag{4p}
\end{equation*}
$$

Solution:

$$
g_{n+1}(s)=\mathbb{E}\left[s^{Z_{n+1}}\right]=\mathbb{E}\left[\mathbb { E } \left[s^{\left.\left.\sum_{j=1}^{Z_{n} X_{n, j}}\right] \mid Z_{n}\right]=\mathbb{E}\left[\prod_{j=1}^{Z_{n}} \mathbb{E}\left[s^{X_{n, j}} \mid Z_{n}\right]\right],, ~, ~, ~}\right.\right.
$$

where we have used independence of the $X_{n, j}$. Because all $X_{n, j}$ are distributed as X, we further obtain

$$
g_{n+1}(s)=\mathbb{E}\left[\prod_{j=1}^{Z_{n}} \mathbb{E}\left[s^{X_{n, j}} \mid Z_{n}\right]\right]=\mathbb{E}\left[\prod_{j=1}^{Z_{n}} \mathbb{E}\left[s^{X}\right]\right]=\mathbb{E}\left[g(s)^{Z_{n}}\right]=g_{n}(g(s)) .
$$

We use induction to show $g_{n}(s)=\frac{p^{n} s}{1-\left(1-p^{n}\right) s}$. It is easy to see that $g_{n}(s)=$ $\frac{p^{n} s}{1-\left(1-p^{n}\right) s}$ for $n=1$ by a. If $g_{n}(s)=\frac{p^{n} s}{1-\left(1-p^{n}\right) s}$ then

$$
\begin{aligned}
g_{n+1}(s)=g_{n}(g(s))= & \frac{p^{n} g(s)}{1-\left(1-p^{n}\right) g(s)}=\frac{p^{n} p s /[1-(1-p) s]}{1-\left(1-p^{n}\right) p s /[1-(1-p) s]} \\
& =\frac{p^{n+1} s}{[1-(1-p) s]-\left(p-p^{n+1}\right) s}=\frac{p^{n+1} s}{1-\left(1-p^{n+1}\right) s} .
\end{aligned}
$$

And the proof is complete.

Remark: In what follows you may extend the domain of $g_{n}(s)$ without further proof to $s \in\left[0,1 /\left(1-p^{n}\right)\right)$. So,

$$
g_{n}(s)=\mathbb{E}\left[s^{Z_{n}}\right]=\frac{p^{n} s}{1-\left(1-p^{n}\right) s} \quad \text { for } s \in\left[0,1 /\left(1-p^{n}\right)\right)
$$

and that

$$
\psi_{n}(t)=\mathbb{E}\left[e^{t Z_{n}}\right]=g_{n}\left(e^{t}\right) \quad \text { for } t<-\log \left(1-p^{n}\right)=\left|\log \left(1-p^{n}\right)\right| .
$$

c) Show that $p^{n} Z_{n}$ converges in distribution to an exponentially distributed random variable with expectation 1.
Solution: We use that the moment generating function of $p^{n} Z_{n}$ is equal to $\psi_{n}\left(p^{n} t\right)=g_{n}\left(e^{p^{n}}\right)$, for $\left.t<p^{-n} \mid \log \left(1-p^{n}\right)\right] \mid$.
There are many ways to continue and here is one:
We define

$$
h(t)=e^{t}-(1+t) .
$$

Then, for $\left.t<p^{-n} \mid \log \left(1-p^{n}\right)\right] \mid$ we have

$$
\begin{aligned}
& \psi_{n}\left(p^{n} t\right)=g_{n}\left(p^{n} e^{t}\right)=\frac{p^{n} e^{t p^{n}}}{1-\left(1-p^{n}\right) e^{t p^{n}}}=\frac{p^{n}\left[1+t p^{n}+h\left(t p^{n}\right)\right]}{1-\left(1-p^{n}\right)\left[1+t p^{n}+h\left(t p^{n}\right)\right]} \\
& =\frac{p^{n}\left[1+t p^{n}+h\left(t p^{n}\right)\right]}{(1-t) p^{n}+t p^{2 n}+\left(1-p^{n}\right) h\left(t p^{n}\right)}=\frac{1+t p^{n}+h\left(t p^{n}\right)}{(1-t)+t p^{n}-\left(1-p^{n}\right) h\left(t p^{n}\right) / p^{n}} .
\end{aligned}
$$

We note that as $n \rightarrow \infty$, we have $p^{n} \rightarrow 0$ and $t p^{n} \rightarrow 0$. Because $h(x) / x \rightarrow 0$ as $x \rightarrow 0$ we have also $h\left(t p^{n}\right) / p^{n}=t h\left(t p^{n}\right) /\left[t p^{n}\right] \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, $\left.p^{-n} \mid \log \left(1-p^{n}\right)\right] \mid \rightarrow 1$ as $n \rightarrow \infty$, because $\log (1-x) / x \rightarrow 1$ as $x \rightarrow 0$. This leads to $\psi_{n}\left(p^{n} t\right) \rightarrow 1 /(1-t)$, for $t \in(-\infty, 1)$ (which contains an open interval around 0$)$. The function $1 /(1-t)$ is the moment generating function for an exponentially distributed random variable with expectation 1 , so $p^{n} Z_{n}$ converges in distribution to an exponential distributed random variable with expectation 1.

Problem 3

Let A_{1}, A_{2}, \cdots be independent events on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and define

$$
A:=\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_{m} .
$$

That is, the A_{i} 's happen infinitely often.
a) Prove (a special case of) the first Borel-Cantelli Lemma:

$$
\begin{equation*}
\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)<\infty \tag{3p}
\end{equation*}
$$

implies $\mathbb{P}(A)=0$.
Solution: For every $i \in \mathbb{N}$, we have $A \subset \cup_{m=i}^{\infty} A_{m}$ and therefore we have for every $i \in \mathbb{N}$,

$$
\mathbb{P}(A)=\mathbb{P}\left(\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_{m}\right) \leq \mathbb{P}\left(\cup_{m=i}^{\infty} A_{m}\right) \leq \sum_{m=i}^{\infty} \mathbb{P}\left(A_{m}\right)
$$

which is decreasing in i and converges to 0 because $\sum_{i=0}^{\infty} \mathbb{P}\left(A_{i}\right)<\infty$.
b) Prove the second Borel-Cantelli Lemma:

$$
\begin{equation*}
\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty \tag{3p}
\end{equation*}
$$

implies $\mathbb{P}(A)=1$.
Solution: Note that $\sum_{n=0}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ implies $\sum_{n=m}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ for all $m \geq 0$. Also note that $A^{c}=\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m}^{c}$.
By $e^{-x} \geq 1-x$ for $x \geq 0$ and independence, we obtain

$$
\mathbb{P}\left(\cap_{m=n}^{\infty} A_{m}^{c}\right)=\prod_{m=n}^{\infty}\left[1-\mathbb{P}\left(A_{m}\right)\right] \leq \prod_{m=n}^{\infty} \exp \left[-\mathbb{P}\left(A_{m}\right)\right]=\exp \left[-\sum_{m=n}^{\infty} \mathbb{P}\left(A_{m}\right)\right]=0
$$

by $\sum_{n=0}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$. So,

$$
\mathbb{P}\left(A^{c}\right)=\mathbb{P}\left(\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m}^{c}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(\cap_{m=n}^{\infty} A_{m}^{c}\right)=0
$$

c) Let X_{1}, X_{2}, \cdots be independent random variables. Show that $X_{n} \xrightarrow{\text { a.s. }} 0$ if and only if $\sum_{i=1}^{\infty} \mathbb{P}\left(\left|X_{i}\right|>1 / k\right)<\infty$ for all $k \in \mathbb{N}$.
Hint: You may use without proof that

$$
\left\{X_{n} \not \supset 0\right\}=\cup_{k=1}^{\infty} \cap_{N=1}^{\infty} \cup_{n=N}^{\infty}\left\{\left(\left|X_{n}\right|>1 / k\right\} .\right.
$$

Solution: Define $A_{n}(1 / k):=\left\{\left|X_{n}\right|>1 / k\right\}$. By the hint

$$
\mathbb{P}\left(X_{n} \not \not \supset 0\right)=\mathbb{P}\left(\cup_{k=1}^{\infty} \cap_{N=1}^{\infty} \cup_{n=N}^{\infty} A_{n}(1 / k)\right) \leq \sum_{k=1}^{\infty} \mathbb{P}\left(\cap_{N=1}^{\infty} \cup_{n=N}^{\infty} A_{n}(1 / k)\right)
$$

From part a) we know that if $\sum_{i=1}^{\infty} \mathbb{P}\left(\left|X_{i}\right|>1 / k\right)<\infty$ for all $k \in \mathbb{N}$, then $\mathbb{P}\left(\cap_{N=1}^{\infty} \cup_{n=N}^{\infty} A_{n}(1 / k)\right)=0$ for all $k \in \mathbb{N}$. Therefore,

$$
\mathbb{P}\left(X_{n} \not \supset 0\right) \leq \sum_{k=1}^{\infty} 0=0 .
$$

If on the other hand

$$
\sum_{i=1}^{\infty} \mathbb{P}\left(\left|X_{i}\right|>1 / k_{0}\right)=\infty
$$

where $k_{0} \in \mathbb{N}$ we have by part b) that
\mathbb{P} (for all $n \in \mathbb{N}$ there exists $m \geq n$ such that $\left.\left|X_{m}\right|>1 / k_{0}\right)=1$.
That is, $\mathbb{P}\left(X_{n} \nrightarrow 0\right)=1$.

Problem 4 Let X_{1}, X_{2}, \cdots be a sequence of independent and identically distributed random variables with $\mathbb{E}\left[X_{1}\right]=1, \mathbb{P}\left(X_{1}=1\right)<1$ and $\mathbb{P}\left(X_{1}>\right.$ $\epsilon)=1$ for some $\epsilon>0$. For $n \in \mathbb{N}$ let \mathcal{F}_{n} be the σ-field generated by $X_{1}, X_{2}, \cdots, X_{n}$ and $\underline{\mathcal{F}}$ the corresponding filtration.
a) For $n \in \mathbb{N}$ define $Y_{n}=\prod_{k=1}^{n} X_{k}$. Show that Y_{1}, Y_{2}, \cdots is a martingale with respect to $\underline{\mathcal{F}}$.
Solution: Y_{n} is by definition measurable with respect to \mathcal{F}_{n}.

$$
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[Y_{n} X_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n} .
$$

It follows also that

$$
\mathbb{E}\left[Y_{n+1}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[Y_{n}\right]=\cdots=\mathbb{E}\left[Y_{1}\right]=1<\infty .
$$

b) Show that $\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i}\right)$ converges almost surely to a non-positive constant.
(4p)
Solution: The logarithm is a concave function. So, By Jensen's inequality

$$
\mathbb{E}\left[\log \left(X_{1}\right)\right] \leq \log \left(\mathbb{E}\left[X_{1}\right]\right)=\log (1)=0
$$

Also note that $(\log x)^{2}<x$ for all $x>x_{0}$ for some $x_{0}>0\left(x_{0}=1\right.$ does the job). So,

$$
\begin{aligned}
& \mathbb{E}\left[\left(\log \left(X_{1}\right)\right)^{2}\right]=\mathbb{E}\left[\left(\log \left(X_{1}\right)\right)^{2} \mathbb{1}\left(X_{1} \leq x_{0}\right)\right]+\mathbb{E}\left[\left(\log \left(X_{1}\right)\right)^{2} \mathbb{1}\left(X_{1}>x_{0}\right)\right] \\
\leq & \mathbb{E}\left[\left(\log \left(X_{1}\right)\right)^{2} \mathbb{1}\left(X_{1} \leq x_{0}\right)\right]+\mathbb{E}\left[X_{1} \mathbb{1}\left(X_{1}>x_{0}\right)\right] \leq \max _{\epsilon \leq x \leq x_{0}}(\log x)^{2}+\mathbb{E}\left[X_{1}\right]<\infty .
\end{aligned}
$$

So we can use the strong law of large numbers (THM 22 of cheat sheet) to show that

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}\left[\log \left[X_{i}\right] \leq 0 .\right.
$$

Remark: It can be shown (and used without proof, if needed) that $\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i}\right)$ converges to a strictly negative constant.
c) Show that Y_{n} converges almost surely to 0 .

Solution:

$$
Y_{n}=\prod_{i=1}^{n} X_{i}=\prod_{i=1}^{n} e^{\log \left(X_{i}\right)}=e^{\sum_{i=1}^{n} \log \left(X_{i}\right)}
$$

So, if $\sum_{i=1}^{n} \log \left(X_{i}\right) \xrightarrow{\text { a.s. }}-\infty$ we are done. By $\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}\left[\log \left[X_{i}\right]<0\right.$, this indeed holds.
(4p)

Problem 5

Let X_{1}, X_{2}, \cdots be independent and identically distributed random variables with

$$
\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2 .
$$

Let $\underline{\mathcal{F}}$ be the filtration generated by those random variables. Define $S_{0}=0$ and $S_{n}=\sum_{k=1}^{n} S_{k}$ for $n \in \mathbb{N}$. Let $a, b \in \mathbb{N}$. Let

$$
T_{-a}=\inf \left\{k \in \mathbb{N} ; S_{k}=-a\right\} \quad \text { and } \quad T_{b}=\inf \left\{k \in \mathbb{N} ; S_{k}=b\right\},
$$

be the hitting times of respectively $-a$ and b. Define $T=\min \left(T_{-a}, T_{b}\right)$.
a) Compute $p=\mathbb{P}\left(T_{-a}=T\right)$.

Solution: S_{n} is \mathcal{F}_{n} measurable by definition. $\mathbb{E}\left[\left|S_{n}\right|\right] \leq n<\infty$ for all n and $\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[S_{n}+X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}$. So, S_{n} is a martingale.
Furthermore let

$$
K=\min \left\{k \in \mathbb{N} ; T_{(a+b)(k-1)+1}=T_{(a+b)(k-1)+2}=\cdots=T_{(a+b) k}=1\right\}
$$

be the smallest positive integer for which $T_{(a+b)(k-1)+1}=T_{(a+b)(k-1)+2}=\cdots=$ $T_{(a+b) k}=1$. Because $a+b$ subsequent +1 's definitely brings you outside the strip (a, b) (if you were not already outside it), $T \leq K(a+b)$. It is trivial to see that K is geometrically distributed with parameter $2^{-(a+b)} \in(0,1)$. Therefore K is finite with probability 1 and has finite expectation and as consequence T is finite with probability 1 and has finite expectation. We can use Theorem 25 and 26 of the cheat sheet (noting that S_{n} is bounded for $n \leq T$), to obtain that

$$
0=\mathbb{E}\left[S_{1}\right]=\mathbb{E}\left[S_{T}\right]=-a \mathbb{P}\left(T_{-a}=T\right)+b\left(1-\mathbb{P}\left(T_{-a}=T\right)\right)
$$

Therefore, $p=\mathbb{P}\left(T_{-a}=T\right)=b /(a+b)$.
b) Show that $Y_{n}=\left(S_{n}\right)^{2}-n$ is an $\underline{\mathcal{F}}$-martingale and show that $\mathbb{E}[T]=a b$. (4p)
Solution: Y_{n} is \mathcal{F}_{n} measurable, because S_{n} is. $\mathbb{E}\left[\left|Y_{n}\right|\right] \leq n^{2}+n<\infty$ and with

$$
\begin{gathered}
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left(S_{n}+X_{n+1}\right)^{2}-(n+1) \mid \mathcal{F}_{n}\right]=\left(S_{n}^{2}\right)-(n+1)+2 S_{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\left(X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right] \\
=\left(S_{n}\right)^{2}-(n+1)+2 S_{n} \times 0+1=\left(S_{n}\right)^{2}-n=Y_{n}
\end{gathered}
$$

Using Theorem 25 of the cheat sheet we obtain

$$
0=\mathbb{E}\left[Y_{1}\right]=\mathbb{E}\left[Y_{T}\right]=p a^{2}+(1-p) b^{2}-\mathbb{E}[T]=a b-\mathbb{E}[T]
$$

and the statement of the question follows.
c) Compute $\mathbb{E}\left[T S_{T}\right]$.

Hint: Find a suitable martingale. You might consider $\mathbb{E}\left[\left(S_{n+1}\right)^{3} \mid \mathcal{F}_{n}\right]$, to get inspiration on which martingale would be suitable.
Solution: Follow the hint:

$$
\begin{aligned}
& \mathbb{E}\left[\left(S_{n+1}\right)^{3} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left(S_{n}+X_{n+1}\right)^{3} \mid \mathcal{F}_{n}\right] \\
& \quad=\left(S_{n}\right)^{3}+3\left(S_{n}\right)^{2} \mathbb{E}\left[X_{n+1}\right]+3 S_{n} \mathbb{E}\left[\left(X_{n+1}\right)^{2}\right]+\mathbb{E}\left[\left(X_{n+1}\right)^{3}\right]=\left(S_{n}\right)^{3}+3 S_{n} .
\end{aligned}
$$

It follows that $Z_{n}=\left(S_{n}\right)^{3}-3 n S_{n}$ satisfies the martingale property. Also $\mathbb{E}\left[\left|Z_{n}\right|\right] \leq n^{3}+3 n^{2}$. The conditions of Theorem 25 are easily checked and we otbain

$$
\begin{aligned}
0=\mathbb{E}\left[Z_{1}\right]=\mathbb{E}\left[Z_{T}\right]=-p a^{3} & +(1-p) b^{3}-3 \mathbb{E}\left[T S_{T}\right] \\
& =b a \frac{b^{2}-a^{2}}{b+a}-3 \mathbb{E}\left[T S_{T}\right]=a b(b-a)-3 \mathbb{E}\left[T S_{T}\right] .
\end{aligned}
$$

So, $\mathbb{E}\left[T S_{T}\right]=a b(b-a) / 3$.

