
STOCKHOLMS UNIVERSITET MT7001

MATEMATISKA INSTITUTIONEN TENTAMEN

Avd. Matematisk statistik October 27, 2020

Exam Probability III

October 27, 2020 kl. 9�14
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Permissible tools: pen, paper and attached �cheat-sheet�

5 problems. Maximum of 60 points

A B C D E

Needed points 50 45 40 35 30

Partial answers might be worth points, even if you cannot �nish an answer!

You are allowed to use results from the �cheat sheet� without proof, unless

the proof is explicitly asked for in the question. You may also use other

results discussed in the lectures or in the course material, such as the Borel-

Cantelli Lemma's. If you use such a result refer to it by stating the theorem

you are using or by referring to its proper name (e.g. Fatou's lemma), and

explicitly check whether the conditions of the theorem are satis�ed.

Throughout the exam N is the set of strictly positive integers, Z the set of

all integers, R and all limits are for n→∞.
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Problem 1

(a) Provide the de�nition of a random variable de�ned on the probability

space (Ω,F ,P). (3p)

(b) Let D be the set of all real numbers with �nite decimal expansion. So,

D = {x ∈ R;x = ±
a∑

j=−a
dj10j for some a ∈ N and d−a, · · · , da ∈ {0, 1, · · · , 9}},

where the �rst and last digits of x may be zero.

(So 2.5 = 5×10−1 + 2×100 + 0×101 and 12 = 0×10−1 + 2×100 + 1×101).

Show that a random variable X is F-measurable if and only if

{ω ∈ Ω;X(ω) ≤ x} ∈ F for all x ∈ D.

(5p)

Hint: You may use Proposition 3 of cheat-sheet without further proof.

(c) Show that if X and Y are F-measurable random variables, then so is

X + Y . (4p)
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Problem 2

a) A random variable X is symmetric if X has the same distribution as −X.

Prove that if a random variable is symmetric, then the imaginary part of the

characteristic function is 0. That is, show that a symmetric random variable

has a real characteristic function. (4p)

Let p ∈ (0, 1) and X be a random variable satisfying

P(X = 0) = p and P(X = k) =
1

2
p(1− p)|k| for k ∈ Z \ {0}.

Note that |X| has a (shifted) geometric distribution.

b) Provide the characteristic function ϕ(t) of X. Here you may assume

without proof that ϕ(t) = ψ(it), where i =
√
−1 and ψ(t) is the moment

generating function of X. (4p)

c) For n ∈ N ∩ (λ−1,∞), de�ne Xn by

P(Xn = 0) =
λ

n
and P(Xn = k) =

λ

2n

(
1− λ

n

)|k|
for k ∈ Z \ {0}.

That is, Xn is distributed as X with p = λ/n.

The sequence of random variables Xn/n converges in distribution as n→∞
(you may just accept that without proving it). Provide the distribution of

that limiting random variable. (4p)

Hint: Providing the characteristic function of the limiting random variable

is already worth some (but not all) points. It might be enlightning (but it

is not required) to study the convergence in distribution of |Xn|/n.



Probability III, October 27, 2020 4

Problem 3

Assume in all subproblems that Z, Y,X,X1, X2, · · · are non-negative random
variables de�ned on the same probability space {Ω,F ,P}.

a) Show that the following statements are equivalent:

� E(Y ) <∞,

� for all ε > 0, there exists δ > 0 such that E(Y 11(A)) < ε for all events
A ∈ F satisfying P(A) < δ. (6p)

b) Let Xn → X in probability as n → ∞ and let Z be a non negative

random variable with E[Z] < ∞, such that |Xn| ≤ Z for all n. Show that

Xn → X in mean as n→∞. (6p)

Hint: First show that E[|Xn − X|] < ∞ and then use part a) with Y =
|Xn −X| and a conveniently chosen event A.
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Problem 4 Initially, a bag contains one red ball and one blue ball. At each

time unit a ball is drawn uniformly at random from the bag, its colour is

noted, and then returned to the bag together with a new ball of the same

colour as the drawn ball. Let Rn be the number of red balls just after the

n-th time unit (that is after n draws and replacements).

a) Show that Mn := Rn/(n + 2) constitutes a martingale which converges

almost surely to some random variable M . (4p)

b) Show that Rn is uniformly distributed on {1, 2, · · · , n+ 1}. (4p)

Hint: One possible approach is to use induction and show that if Rn is a

random variable which is uniform on {1, 2, · · · , n+ 1}, then Rn+1 is uniform

on {1, 2, · · · , n+ 2}.

c) Show that M is uniformly distributed on (0, 1). (4p)
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Problem 5

Let X1, X2, · · · be independent and identically distributed random variables,

with P(X1 = 1) = P(X1 = −1) = 1/2 and let

Sn =
n∑
k=1

Xk and Yn = (Sn)2 − n.

Let F be the �ltration generated by X1, X2, · · · . Let a be a strictly positive

integer and let T = min{n ≥ 1 : |Sn| = a}.

a) Show that Y1, Y2, · · · is a martingale with respect to F . (3p)

b) Show that T is a stopping time with �nite mean and variance. (3p)

c) Show that E(T ) = a2. (3p)

d) Find real constants b and c such that

Zn = (Sn)4 − 6n(Sn)2 + bn2 + cn

constitutes a martingale with respect to F . (3p)

Remark: This result can be used to compute E(T 2). You do not have to

do that.

Good Luck!
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Reminder

σ-algebras, probability measures and expectation

De�nition 1 The Borel σ-algebra on R, is the smallest σ-algebra generated

by the open subsets of R. This de�nition can be extended to Rd for d ≥ 1.

De�nition 2

lim sup
n→∞

An := ∩∞n=1 ∪∞m=n Am

lim inf
n→∞

An := ∪∞n=1 ∩∞m=n Am

Proposition 3 A random variable X is F-measurable if and only if

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} belongs to F for all x ∈ R.

De�nition 4 The distribution measure µX of the random variable X is the

probability measure on (R,B) de�ned by µX(B) = P(X ∈ B) for Borel sets

B ∈ B, where B is the Borel σ-algebra.

Proposition 5 If the σ-algebra A is generated by a �nite partition P. Then
the function Y is A measurable if and only if Y is constant on each element

of P.

Lemma 6 If X,Y satisfy min(E(X+),E(X−)) <∞, then

(i) E(aX + bY ) = aE(X) + bE(Y ) (linearity)

(ii) E(X) ≤ E(Y ) if X ≤ Y a.s. (monotonicity)

De�nition 7 Let P = {A1, · · · , An} be a �nite partition, which generates

the σ-algebra A ⊂ F , then E(X|A)(ω) =
∑n

i=1 E(X|Ai)11(ω ∈ Ai) for ω ∈ Ω

Lemma 8 (Jensen's inequality) We have E(φ(X)) ≥ φ(E(X)) for con-

vex functions φ.
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Characteristic functions

De�nition 9 the Characteristic function of a random variable X is the

function ϕ : R → C, de�ned by ϕX(t) = E(eitX) = E(cos[tX]) + iE(sin[tx])
where i =

√
−1.

Properties of ϕX :

� ϕX(0) = 1

� |ϕX(t)| ≤ 1

� ϕX(−t) = ϕX(t)

� If a, b ∈ R and Y = aX + b then ϕY (t) = eitbϕX(at)

� If the random variables X and Y are independent, then ϕX+Y (t) =
ϕX(t)ϕY (t)

� ϕX is real if and only if X and −X have the same distribution, (X is

symmetric)

Theorem 10 Let X be a random variable with distribution function F and

characteristic function ϕ. If F is continuous in both a and b, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt

special cases:

� If
∫
R |ϕ(t)|dt <∞, then X has a continuous distribution with density

f(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt

� If the distribution of X is discrete, then

P(X = x) = lim
T→∞

1

2T

∫ T

−T
e−itxϕ(t)dt

Theorem 11 Let ϕ(k)(·) be the k-th complex derivative of ϕ.

� If ϕ
(k)
X (0) exists then E(|Xk|) <∞ if k is even and E(|Xk−1|) <∞ if

k is odd

� if E(|Xk|) < ∞ then ϕX(t) =
∑k

j=0
E(Xj)
j! (it)j + o(tk), where f(x) =

o(x) if f(x)/x→ 0 for x→ 0
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Some useful results for convergence results

Chebychev's inequality: P(|X| > x) ≤ E(X2)
x2

Markov inequality: P(|X| > x) ≤ E(|X|r)
xr

Hölder's inequality: For p, q > 1 such that 1/p+ 1/q = 1 we have

E(|XY |) ≤ [E(|X|p)]1/p[E(|X|q)]1/q

Minkovski's inequality: For r ≥ 1 we have

[E(|X + Y |r)]1/r ≤ [E(|X|r)]1/r + [E(|X|r)]1/r

Lemma 12 (Fatou's Lemma) Let X1, X2, · · · be non-negative random vari-

ables, then E(lim inf Xn) ≤ lim inf E(Xn).

De�nition 13 (Tail events) If X1, X2, · · · are random variables on (Ω,F ,P)
and Hn = σ(Xn+1, Xn+2, · · · ) is the smallest σ-algebra in which all random

variables Xn+1, Xn+2, · · · are measurable, then H∞ := ∩nHn is called the

tail σ-algebra, and events contained in it are tail events.

Theorem 14 (Kolmogorov's zero-one law) If X1, X2, · · · are indepen-

dent, then all tail events H ⊂ H∞ satisfy either P(H) = 1 or P(H) = 0

De�nition 15 (Uniform integrability) A sequence of r.v. X1, X2, · · · is
uniformly integrable if

sup
n≥1

E(|Xn|11(|Xn| > a))→ 0 as a→∞

Theorem 16 Let X and X1, X2, · · · be random variables such that Xn
P→ X

then the following statements are equivalent

1. X1, X2, · · · is uniformly integrable

2. E(|Xn|) <∞ for all n, E(|X|) <∞ and Xn
1→ X

3. E(|Xn|) <∞ and E(|Xn|)→ E(|X|) <∞



Probability III, October 27, 2020 10

Martingales

Some Properties of martingales: Let S1, S2, · · · be a martingale with

respect to F = (F0,F1, · · · ).

� E(Sn+m|Fn) = Sn

� E(Sn) = E(S1)

� E((Sn)2) is non decreasing

Theorem 17 (Doob decomposition) A F-submartingale Y0, Y1, · · · with
�nite means may be expressed in the form Yn = Mn +Sn, where M1,M2, · · ·
is a F-martingale and Sn is Fn−1 measurable for all n. This decomposition

is unique.

Lemma 18 (Doob-Kolmogorov inequality) If S1, S2, · · · is a martin-

gale with respect to F , then for all ε > 0 we have P
(

max
1≤k≤n

|Sk| ≥ ε
)
≤

ε−2E((Sn)2).

Theorem 19 (Martingale convergence theorem) If S1, S2, · · · is a mar-

tingale with respect to F and E((Sn)2)↗M <∞, then there exists a random

variable S such that Sn
a.s.→ S.

De�nition 20 (Cauchy sequence) A sequence of real numbers x1, x2, · · ·
is a Cauchy sequence if for all ε > 0 there exists an N such that for all

n ≥ m ≥ N , we have |xn − xm| < ε.
We know that a sequence is convergent if and only if it is a Cauchy sequence.

Theorem 21 Let S0, S1, · · · be a martingale with respect to F such that

S0 = 0 and E((Sn)2) <∞ for all n. De�ne

〈S〉n =

n∑
k=1

E((Sk − Sk−1)2|Fk−1) and 〈S〉∞ = lim
n→∞

〈S〉n.

Let f ≥ 1 be a given increasing function satisfying
∫∞
0 [f(x)]−2dx < ∞.

Then,

(i) On {ω : 〈S(ω)〉∞ <∞} Sn
a.s.→ S for some random variable S

(ii) On {ω : 〈S(ω)〉∞ =∞}, Sn/f(〈S〉n)
a.s.→ 0

Theorem 22 (Strong Law of Large Numbers) Let X1, X2, · · · be i.i.d.

with E(X1) = µ and V ar(X1) = σ2 < ∞ and de�ne S0 = 0 and Sn =∑n
k=1(Xk − µ) for n ≥ 1. Then Sn

n
a.s.→ 0.
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Theorem 23 (Martingale Central Limit theorem) S0, S1, · · · is a mar-

tingale with respect to F , with S0 = 0 and E((Sn)2) <∞ for all n. Assume

that n−1〈S〉n
P→ σ2 > 0 and for all ε > 0

1

n

n∑
k=1

E((Sk − Sk−1)211((Sk − Sk−1)2 > εn))→ 0.

Then, 1√
nσ2

Sn
d→ N (0, 1)

Theorem 24 (Optional stopping I) Let S1, S2, · · · be a martingale with

respect to F . If T is an a.s. bounded stopping time for F (i.e. P(T ≤ a) = 1
for some a ≥ 0), then E(ST ) = E(S1).

Theorem 25 (Optional stopping II) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the

following conditions hold

� P(T <∞) = 1,

� E(|ST |) <∞,

� E(Sn11(T > n))→ 0 as n→∞.

Theorem 26 (Optional Stopping III) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the fol-

lowing conditions hold

� E(T ) <∞,

� E(|Sn+1 − Sn||Fn) ≤ K for all n < T and some K > 0

Wald's equation and identity: If X1, X2, · · · are i.i.d. random variables

with E(X1) = µ <∞ and Sn =
∑n

k=1Xk and T is a stopping time satisfying

E(T ) <∞, then E(ST ) = µE(T ).
If in addition there exists a h > 0 such that M(t) = E(etX1) < ∞ for all

|t| < h and M(t) > 1 and |Sn| < C for some constant C > 0 and all n ≤ T ,
then E(etST [M(t)]−T ) = 1.


