
Solutions exam Probability III

October 27, 2020

Problem 1

(a) Provide the de�nition of a random variable de�ned on the probability

space (Ω,F ,P). (3p)

Solution: A random variable is a function X : Ω → R with the property

that the set {ω ∈ Ω : X(ω) ∈ B} belongs to F for each Borel set B ∈ B,
where B is the Borel σ-algebra on R.

(b) Let D be the set of all real numbers with �nite decimal expansion. So,

D = {x ∈ R;x = ±
a∑

j=−a
dj10j for some a ∈ N and d−a, · · · , da ∈ {0, 1, · · · , 9}},

where the �rst and last digits of x may be zero.

(So 2.5 = 5×10−1 + 2×100 + 0×101 and 12 = 0×10−1 + 2×100 + 1×101).
Show that a random variable X is F-measurable if and only if

{ω ∈ Ω;X(ω) ≤ x} ∈ F for all x ∈ D. (5p)

Solution: By Proposition 3 of the cheat sheet we know that a random

variable X is F-measurable if and only if {ω ∈ Ω;X(ω) ≤ x} ∈ F for all

x ∈ R. It follows immediately from D ⊂ R that {ω ∈ Ω;X(ω) ≤ x} ∈ F for

all x ∈ D if {ω ∈ Ω;X(ω) ≤ x} ∈ F for all x ∈ R.
To prove the other implication, de�ne b(x) = min{j ∈ N; 10j > x} for x ∈ R.
Further de�ne

Da = {x ∈ D;x = ±
a∑

j=−a
dj10j for some d−a, · · · , da ∈ {0, 1, · · · , 9}},

For a ≥ b(x) de�ne xa = min{y ∈ Da; y ≥ x}. Then we note that xa is

a decreasing sequence converging to x (note that |xa − x| < 10−a → 0 as

a→∞. So, for all x ∈ R we obtain that

{ω ∈ Ω;X(ω) ≤ x} = ∩∞a=b(x){ω ∈ Ω;X(ω) ≤ {ω ∈ Ω;X(ω) ≤ xa}}.

If we assume that all elements of the intersection are in F , then so is {ω ∈
Ω;X(ω) ≤ x}, since a σ-algebra is closed under countable intersections and

we are ready.
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(c) Show that if X and Y are F-measurable random variables, then so is

X + Y . (4p)

Solution: By part b we have to show that {ω ∈ Ω;X(ω) + Y (ω) ≤ x} ∈ F
for all x ∈ D. Note that for all y ∈ D we have

{ω ∈ Ω;X(ω) = y} = {ω ∈ Ω;X(ω) ≤ y}∩(∩∞k=1{ω ∈ Ω;X(ω) ≤ y−10−k}C ,

which is in F , because complements and countable intersections of elements

of a σ-algebra are in the σ-algebra.
Now note that for all x ∈ D

{ω ∈ Ω;X(ω)+Y (ω) ≤ x} = ∩y∈D ({ω ∈ Ω;X(ω) = y} ∩ {ω ∈ Ω;Y (ω) ≤ x− y}) .

By construction D is a countable set and on the right hand side all separate

sets in the intersection are elements of F , since y and x (and therefore x−y)
are elements of D. So the left hand side is also in F .
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Problem 2

a) A random variable X is symmetric if X has the same distribution as −X.

Prove that if a random variable is symmetric, then the imaginary part of the

characteristic function is 0. That is, show that a symmetric random variable

has a real characteristic function. (4p)

Solution: The characteristic function of X is given by

ϕ(t) = E[cos(tX)] + iE[sin(tX)]

and the characteristic function of −X is given by

E[cos(t[−X])] + iE[sin(t[−X])] = E[cos(tX)]− iE[sin(tX)],

where we used the symmetry of the cosine function and the anti-symmetry

of the sine function. If X has the same distribution as −X then they have

the same characteristic function and therefore iE[sin(tX)] = −iE[sin(tX)]
for all t, which implies E[sin(tX)] = 0 and the result follows.

Let p ∈ (0, 1) and X be a random variable satisfying

P(X = 0) = p and P(X = k) =
1

2
p(1− p)|k| for k ∈ Z \ {0}.

Note that |X| has a (shifted) geometric distribution.

b) Provide the characteristic function ϕ(t) of X. Here you may assume

without proof that ϕ(t) = ψ(it), where i =
√
−1 and ψ(t) is the moment

generating function of X. (4p)

Solution: First we compute the moment generating function

ψ(t) = E[etX ] = pet·0 +
∞∑
k=1

1

2
p(1− p)ketk +

−1∑
k=−∞

1

2
p(1− p)−ketk

=

∞∑
k=0

1

2
p(1− p)ketk +

0∑
k=−∞

1

2
p(1− p)−ketk

=
p

2

1

1− (1− p)et
+
p

2

1

1− (1− p)e−t

=
p

2

2− (1− p)(e−t + et)

1 + (1− p)2 − (1− p)(et + e−t)
= p

1− (1− p) e−t+et

2

1 + (1− p)2 − 2(1− p) et+e−t

2

Using the hint we obtain that

ϕ(t) = p
1− (1− p) e−it+eit

2

1 + (1− p)2 − 2(1− p) eit+e−it

2

.
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Further noting that eit+e−it

2 = cos t+i sin t+cos t−i sin t
2 = cos t, we obtain that

ϕ(t) = p
1− (1− p) cos t

1 + (1− p)2 − 2(1− p) cos t
.

c) For n ∈ N ∩ (λ−1,∞), de�ne Xn by

P(Xn = 0) =
λ

n
and P(Xn = k) =

λ

2n

(
1− λ

n

)|k|
for k ∈ Z \ {0}.

That is, Xn is distributed as X with p = λ/n.
The sequence of random variables Xn/n converges in distribution as n→∞
(you may just accept that without proving it). Provide the distribution of

that limiting random variable. (4p)

Hint: Providing the characteristic function of the limiting random variable

is already worth some (but not all) points. It might be enlightning (but it

is not required) to study the convergence in distribution of |Xn|/n.

Solution: Let ϕn(t) be the characteristic function of Xn, which by part b

ϕn(t) =
λ

n

1− (1− λ/n) cos t

1 + (1− λ/n)2 − 2(1− λ/n) cos t
.

Standard properties of characteristic functions then give that the character-

istic function of Xn/n is given by ϕn(t/n), which is

ϕn(t/n) =
λ

n

1− (1− λ/n) cos[t/n]

1 + (1− λ/n)2 − 2(1− λ/n) cos[t/n]
.

Note that using the Taylor expansion of the cosine,

cos[t/n] = 1− 1

2

t2

n2
+ o(1/n2).

So,

ϕn(t/n) =
λ

n

1− (1− λ/n)(1− t2

2n2 ) + o(1/n2)

1 + (1− λ/n)2 − 2(1− λ/n)(1− t2

2n2 ) + o(1/n2)

=
λ

n

λ/n+ (1− λ/n) t2

2n2 + o(1/n2)

(λ/n)2 + 2(1− λ/n) t2

2n2 + o(1/n2)
=

λ2 + o(1/n)

λ2 + t2 + o(1/n)
→ λ2

λ2 + t2
.

This is the Characteristic function of the random variable with density func-

tion λ
2 e
−λ|x|, which is the density function of a �symmetrized� exponential.
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Problem 3

Assume in all subproblems that Z, Y,X,X1, X2, · · · are non-negative random
variables de�ned on the same probability space {Ω,F ,P}.
a) Show that the following statements are equivalent:

� E(Y ) <∞,

� for all ε > 0, there exists δ > 0 such that E(Y 11(A)) < ε for all events
A ∈ F satisfying P(A) < δ. (6p)

Solution: Suppose that for all ε > 0, there exists δ = δ(ε) > 0, such that

E(Y 11A) < ε for all A satisfying P(A) < δ. Let ε and x > 0 be such that

P(Y > x) < δ(ε). Then for all y > x we have

E(Y ) = E(Y 11(Y ≤ y)) + E(Y 11(Y > y)) ≤ yP(Y ≤ y) + ε ≤ y + ε <∞.

If on the other hand E(Y ) <∞, then E(Y 11(Y > x))→ 0. So, there exists y
such that E(Y 11(Y > y) < ε/2. Now note that

E(Y 11(A)) = E(Y 11(A ∩ Y > y)) + E(Y 11(A ∩ Y ≤ y))

≤ E(Y 11(Y > y)) + yP(A ∩ Y ≤ y) ≤ ε/2 + yP(A).

The theorem follows by chosing δ = ε/(2y).

b) Let Xn → X in probability as n → ∞ and let Z be a non negative

random variable with E[Z] < ∞, such that |Xn| ≤ Z for all n. Show that

Xn → X in mean as n→∞. (6p)

Hint: First show that E[|Xn − X|] < ∞ and then use part a) with Y =
|Xn −X| and a conveniently chosen event A.

Solution: Xn
P→ X implies P(|Xn −X| ≥ κ)→ 0 for all κ > 0. Therefore,

Xn
P→ X and |Xn| < Z implies that P(|X| ≥ Z + κ) = 0 for all κ > 0,

and therefore |X| is almost surely less than or equal to Z. This implies

that we have |Xn − X| ≤ 2Z almost surely. Which in turn implies that

E(|Xn −X|) <∞.

Observe further that

E(|Xn−X|) = E(|Xn−X|11(|Xn−X| > κ))+E(|Xn−X|11(|Xn−X| ≤ κ))

≤ κ+ E(|Xn −X|11(|Xn −X| > κ))

Note that P(|Xn −X| > κ) → 0, so there is an integer N such that for all

n > N we have P(|Xn −X| > κ) < δ.
By part (a) and E(|Xn −X|) <∞, this implies

E(|Xn −X|) ≤ κ+ ε.

Sending κ and ε to 0 gives the desired result.
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Problem 4 Initially, a bag contains one red ball and one blue ball. At each

time unit a ball is drawn uniformly at random from the bag, its colour is

noted, and then returned to the bag together with a new ball of the same

colour as the drawn ball. Let Rn be the number of red balls just after the

n-th time unit (that is after n draws and replacements).

a) Show that Mn := Rn/(n + 2) constitutes a martingale which converges

almost surely to some random variable M . (4p)

Solution: By de�nition we have |Mn| = Mn ≤ 1 < ∞. Furthermore,

because the probability of drawing a red ball in step n is Mn we obtain

E[Mn+1|Mn] = Mn
Rn + 1

n+ 3
+(1−Mn)

Rn
n+ 3

=
Rn
n+ 3

+
Mn

n+ 3
=

Rn
n+ 3

+
Rn

(n+ 2)(n+ 3)
=

Rn
n+ 2

= Mn

and the conditions for a martingale are checked. We then can use the mar-

tingale convergence theorem, noting that E[(Mn)2] ≤ 1 <∞ for all n.

b) Show that Rn is uniformly distributed on {1, 2, · · · , n+ 1}. (4p)

Solution: It is clear that P(R1 = 1) = P(R1 = 2) = 1/2 because the

probability that the �rst draw gives a red ball is 1/2.
Now assume that P(Rn = k) = 1/(n+ 1) for k ∈ {1, 2, · · · , n+ 1}. Then

P(Rn+1 = k) =
n+1∑
j=1

P(Rn+1 = k|Rn = j)P(Rn = j)

by the law of total probability. Also note that P(Rn+1 = k|Rn = j) is zero

if j 6∈ {k − 1, k}, while

P(Rn+1 = k|Rn = k−1) =
k − 1

n+ 2
and P(Rn+1 = k|Rn = k) = 1− k

n+ 2
.

So, for k ∈ {1, 2, · · · , n+ 2}

P(Rn+1 = k) =
k − 1

n+ 2

1

n+ 1
+

(
1− k

n+ 2

)
1

n+ 1
=

1

n+ 1
− 1

(n+ 1)(n+ 2)
=

1

n+ 2
,

as desired. Note that for k = 1 and k = n + 2 one of the summands in the

second term is 0.

c) Show that M is uniformly distributed on (0, 1). (4p)

Solution: For x ∈ (0, 1),

P(Mn ≤ x) = P(Rn ≤ (n+ 2)x) =
1

n+ 2

n+1∑
k=1

11(k ≤ (n+ 2)x)→ x

by part b)

Which means that Mn
d→ M , where M is uniformly distributed on (0, 1).

Therefore M from part a) is uniformly distributed.
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Problem 5

Let X1, X2, · · · be independent and identically distributed random variables,

with P(X1 = 1) = P(X1 = −1) = 1/2 and let

Sn =
n∑
k=1

Xk and Yn = (Sn)2 − n.

Let F be the �ltration generated by X1, X2, · · · . Let a be a strictly positive

integer and let T = min{n ≥ 1 : |Sn| = a}.
a) Show that Y1, Y2, · · · is a martingale with respect to F . (3p)

Solution: First Yn is de�ned in terms of X1, X2, · · · , Xn and n, therefore it
is Fn measurable. Furthermore, E(|Yn|) ≤ n2 +n <∞ for all n ≥ 1. Finally,

E(Yn+1|Fn) = E((Sn)2 + 2SnXn+1 + (Xn+1)
2 − (n+ 1)|Fn)

= (Sn)2+2SnE(Xn+1)+E((Xn+1)
2)−(n+1) = (Sn)2+Sn×0+1−(n+1) = (Sn)2−n = Yn

b) Show that T is a stopping time with �nite mean and variance. (3p)

Solution: T is a stopping time, since the event {T = n} only depends on

X1, X2, · · · , Xn. Furthermore, for n ≥ 1, let An be the event

{X(n−1)2a+1 = 1, X(n−1)2a+2 = 1, · · · , X(n)2a = 1},

which is the event that from time (n − 1)2a + 1 up to and including time

2an the random walk only increases. Note that if An occurs then T ≤ 2an.
In particular for T1 = min{n ≥ 1 : An occurs}, we have that T ≤ 2aT1.
Furthermore Since T1 is geometrically distributed with parameter 2−2a, T1
and therefore T have �nite �rst and second moment.

c) Show that E(T ) = a2. (3p)

Solution: We use the second optional stopping theorem.

E(|YT |) ≤ a2 + E(T ) <∞ and

|E(Yn|T > n)P(T > n)| ≤ |a2P(T > n)|+|E(T |T > n)P(T > n)| ≤ a2P(T > n)+E(T11(T > n))→ 0

by the fact that E(T ) <∞. Therefore 0 = E(Y1) = E(YT ) = a2 − E(T ) and
E(T ) = a2 follows.
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d) Find real constants b and c such that

Zn = (Sn)4 − 6n(Sn)2 + bn2 + cn

constitutes a martingale with respect to F . (3p)

Remark: This result can be used to compute E(T 2). You do not have to

do that. In Home exam the �rst and second summand on the Right Hand

Side were multiplied by 2.

Solution: First, E(|Zn|) ≤ n4 + 6n3 + |b|n2 + |c|n <∞. Secondly,

E(Zn+1|Fn) = E((Sn+Xn+1)
4−6(n+1)(Sn+Xn+1)

2+b(n+1)2+c(n+1)|Fn)

= E((S4
n + 4S3

nXn+1 + 6S2
nX

2
n+1 + 4SnX

3
n+1 +X4

n+1)

− 6(n+ 1)(S2
n + 2SnXn+1 +X2

n+1) + b(n+ 1)2 + c(n+ 1)|Fn)

= S4
n + 4S3

nE(Xn+1) + 6S2
nE(X2

n+1) + 4SnE(X3
n+1) + E(X4

n+1))

− 6(n+ 1)(S2
n + 2SnE(Xn+1) + E(X2

n+1)) + b(n+ 1)2 + c(n+ 1)

= S4
n + 6S2

n + 1− 6(n+ 1)(S2
n + 1) + b(n+ 1)2 + c(n+ 1)

= S4
n−6nS2

n+bn2+cn+(2b−6)n+(b+c−5) = Zn+(2b−6)n+(b+c−5)

So Zn constitutes a martingale if 2b − 6 = 0 and b + c − 5 = 0. That is, if

b = 3 and c = 2.
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