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Prequel

State and sign that you have obtained your solutions of this exam without

consulting other people, the internet, books, notes etc. during the time of

the exam, other than for contacting the teacher, either for questions on

clari�cation or for submitting the solutions.
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Problem 1

(a) Provide the de�nition of a σ-algebra de�ned on the sample space Ω.(3p)

(b) Let F be the smallest σ-algebra on Ω = (0, 1) containing all open inter-

vals contained in (0, 1). Show that every single point x ∈ (0, 1) is an element

of F . (4p)

(c) Let G be the smallest σ-algebra on Ω = (0, 1) containing all single points
in (0, 1). Show that G 6= F . That is, give an element of F which is not in G
and explain why this element is not in G. (5p)
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Problem 2

a) Let X be an exponential distributed random variable with expectation

1/λ. That is, P(X > x) = e−λx for all x ≥ 0. Provide the characteristic

function ϕX(t) of X. (3p)

Hint: You may assume without proof that ϕX(t) = ψ(it), where i =
√
−1

and ψ(t) is the moment generating function of X.

b) Let Y be a random variable with distribution de�ned through

P(Y = 1) = P(Y = −1) = 1/2.

Let Z = Y X. Deduce what ϕZ(t), the characteristic function of Z, is. (3p)

Remark: The characteristic function is ϕZ(t) = λ2

λ2+t2
. If you did not

manage to deduce that, you can still obtain some points for part b), for

correct elements in the deduction and you can still use the correct answer

for part c).

Let Y1, Y2, · · · andX1, X2, · · · be independent random variables, where Y1, Y2, · · ·
are all distributed as Y and for k ∈ N, Xk is exponentially distributed with

expectation 1/
√
k. For k ∈ N, de�ne Zk = YkXk.

c) Provide the characteristic function of Wn = 1√
logn

∑n
k=1 Zk. Use this to

show that Wn converges in distribution to some random variable as n→∞.

What is the distribution of this random variable? (6p)

Hint: You may use without proof that for a positive function c(n) ≥ 0,
which decreases to 0 as n→∞, we have

n−c(n)
n∏
k=1

(
1 +

c(n)

k

)
→ 1.
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Problem 3

Assume in all subproblems that X,X1, X2, · · · are random variables de�ned

on the same probability space {Ω,F ,P}. Assume in both part a) and b) that

Xn
P→ X.

a) Show that there exists a non-random strictly increasing sequence of pos-

itive integers n1, n2, · · · , such that Xnk

a.s.→ X as k →∞. (6p)

Hint: You may use without proof that if 11(|Xn − X| > ε)
a.s.→ 0 for every

ε > 0 then Xn
a.s.→ X.

You do not have to use part a) in part b) below.

b) Show that if g : R→ R is a continuous function, then g(Xn)
P→ g(X).(6p)

Hint: Note that if g : R → R is continuous, then it is uniform continuous

on any interval [−M,M ] with M ∈ (0,∞). That is, for all ε > 0 there exist

δ > 0 such that |g(x)− g(y)| < ε if |x− y| < δ and x, y ∈ [−M,M ].
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Problem 4

Let λ > 1 be constant. For i, j ∈ N0 let Xij be independent and identically

distributed random variables with a Poisson distribution with expectation

λ. That is,

P(Xij = k) =
λk

k!
e−λ for k ∈ N0.

De�ne Z0 = 1. For i ∈ N0 de�ne

Zi+1 =

Zi∑
j=1

Xij ,

where we de�ne
∑0

j=1 = 0.

a) Show (e.g. by induction) that

E[Zn] = λn and E[(Zn)2] = λn
λn+1 − 1

λ− 1
for all n ∈ N.

(4p)

b) Show that

Wn :=
1

λn
Zn

converges almost surely to some random variable W . Furthermore, show

that P(W <∞) = 1. (4p)

c) Show that

Vn = λ−n
n∑
i=1

Zi

converges almost surely to V =
(∑∞

i=0 λ
−i)W = λ

λ−1W . (4p)
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Problem 5

Let p ∈ (0, 1) be constant and X1, X2, · · · be independent and identically

distributed random variables, satisfying

P(X1 = 1) = p and P(X1 = −1) = 1− p.

For reasons of convenience set X0 = −1. For n ∈ N let Kn = 0 if Xn = −1
and otherwise letKn be the length of the sequence of consecutive +1's ending
at n. That is, Kn = min{j ∈ N0;Xn−j = −1}.

Let L ∈ N be a given integer. We are interested in T = min{n ∈ N;Kn = L},
which is the �rst time a sequence of L consecutive +1's appears.

To study T we can use the loss (or gain, if negative) of a casino in which the

folowing happens:

1. At time 0 the loss of the casino is 0.
2. At each positive integer time point one new gambler arrives with gam-

bling capital 1 SEK which he or she puts immediately at stake.
3. At time k ∈ N, if Xk = −1, all gamblers which were still in the casino

and arrived at time k or before, leave the casino empty handed.
4. At time k ∈ N, if Xk = 1, all gamblers present at the casino (including

the one that arrived at time k) multiply their capital instantly by a

factor 1/p, which they will put again at stake at time k + 1.

So, at time n (immediately after the arrival of the n-th gambler and the n-th
bet) the number of gamblers in the casino is Kn.

a) Show that the loss of the casino at time n (when the new arrival and time

n gambling has already occured) is given by

Mn =
p−Kn − 1

1− p
− n

and show that M1,M2, · · · constitutes a martingale with respect to F , the
�ltration generated by X1, X2, · · · . (4p)

b) Compute E[T ]. You may use without proof that T is a stopping time

with respect to F and that E[T ] <∞. (3p)

c) Let s ∈ [0, 1] be a constant. Compute E[sT ]. (5p)

Hint:A way to solve this might be to adapt step 2 above in such a way that

for all n ∈ N, the customer arriving at time n has initial gambling capital

sn−1. Note that partial answers might be worth points.

Good Luck!
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Reminder

σ-algebras, probability measures and expectation

De�nition 1 The Borel σ-algebra on R, is the smallest σ-algebra generated

by the open subsets of R. This de�nition can be extended to Rd for d ≥ 1.

De�nition 2

lim sup
n→∞

An := ∩∞n=1 ∪∞m=n Am

lim inf
n→∞

An := ∪∞n=1 ∩∞m=n Am

Proposition 3 A random variable X is F-measurable if and only if

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} belongs to F for all x ∈ R.

De�nition 4 The distribution measure µX of the random variable X is the

probability measure on (R,B) de�ned by µX(B) = P(X ∈ B) for Borel sets

B ∈ B, where B is the Borel σ-algebra.

Proposition 5 If the σ-algebra A is generated by a �nite partition P. Then
the function Y is A measurable if and only if Y is constant on each element

of P.

Lemma 6 If X,Y satisfy min(E(X+),E(X−)) <∞, then

(i) E(aX + bY ) = aE(X) + bE(Y ) (linearity)

(ii) E(X) ≤ E(Y ) if X ≤ Y a.s. (monotonicity)

De�nition 7 Let P = {A1, · · · , An} be a �nite partition, which generates

the σ-algebra A ⊂ F , then E(X|A)(ω) =
∑n

i=1 E(X|Ai)11(ω ∈ Ai) for ω ∈ Ω

Lemma 8 (Jensen's inequality) We have E(φ(X)) ≥ φ(E(X)) for con-

vex functions φ.
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Characteristic functions

De�nition 9 the Characteristic function of a random variable X is the

function ϕ : R → C, de�ned by ϕX(t) = E(eitX) = E(cos[tX]) + iE(sin[tx])
where i =

√
−1.

Properties of ϕX :

� ϕX(0) = 1

� |ϕX(t)| ≤ 1

� ϕX(−t) = ϕX(t)

� If a, b ∈ R and Y = aX + b then ϕY (t) = eitbϕX(at)

� If the random variables X and Y are independent, then ϕX+Y (t) =
ϕX(t)ϕY (t)

� ϕX is real if and only if X and −X have the same distribution, (X is

symmetric)

Theorem 10 Let X be a random variable with distribution function F and

characteristic function ϕ. If F is continuous in both a and b, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt

special cases:

� If
∫
R |ϕ(t)|dt <∞, then X has a continuous distribution with density

f(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt

� If the distribution of X is discrete, then

P(X = x) = lim
T→∞

1

2T

∫ T

−T
e−itxϕ(t)dt

Theorem 11 Let ϕ(k)(·) be the k-th complex derivative of ϕ.

� If ϕ
(k)
X (0) exists then E(|Xk|) <∞ if k is even and E(|Xk−1|) <∞ if

k is odd

� if E(|Xk|) < ∞ then ϕX(t) =
∑k

j=0
E(Xj)
j! (it)j + o(tk), where f(x) =

o(x) if f(x)/x→ 0 for x→ 0
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Some useful results for convergence results

Chebychev's inequality: P(|X| > x) ≤ E(X2)
x2

Markov inequality: P(|X| > x) ≤ E(|X|r)
xr

Hölder's inequality: For p, q > 1 such that 1/p+ 1/q = 1 we have

E(|XY |) ≤ [E(|X|p)]1/p[E(|X|q)]1/q

Minkovski's inequality: For r ≥ 1 we have

[E(|X + Y |r)]1/r ≤ [E(|X|r)]1/r + [E(|X|r)]1/r

Lemma 12 (Fatou's Lemma) Let X1, X2, · · · be non-negative random vari-

ables, then E(lim inf Xn) ≤ lim inf E(Xn).

De�nition 13 (Tail events) If X1, X2, · · · are random variables on (Ω,F ,P)
and Hn = σ(Xn+1, Xn+2, · · · ) is the smallest σ-algebra in which all random

variables Xn+1, Xn+2, · · · are measurable, then H∞ := ∩nHn is called the

tail σ-algebra, and events contained in it are tail events.

Theorem 14 (Kolmogorov's zero-one law) If X1, X2, · · · are indepen-

dent, then all tail events H ⊂ H∞ satisfy either P(H) = 1 or P(H) = 0

De�nition 15 (Uniform integrability) A sequence of r.v. X1, X2, · · · is
uniformly integrable if

sup
n≥1

E(|Xn|11(|Xn| > a))→ 0 as a→∞

Theorem 16 Let X and X1, X2, · · · be random variables such that Xn
P→ X

then the following statements are equivalent

1. X1, X2, · · · is uniformly integrable

2. E(|Xn|) <∞ for all n, E(|X|) <∞ and Xn
1→ X

3. E(|Xn|) <∞ and E(|Xn|)→ E(|X|) <∞
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Martingales

Some Properties of martingales: Let S1, S2, · · · be a martingale with

respect to F = (F0,F1, · · · ).

� E(Sn+m|Fn) = Sn

� E(Sn) = E(S1)

� E((Sn)2) is non decreasing

Theorem 17 (Doob decomposition) A F-submartingale Y0, Y1, · · · with
�nite means may be expressed in the form Yn = Mn +Sn, where M1,M2, · · ·
is a F-martingale and Sn is Fn−1 measurable for all n. This decomposition

is unique.

Lemma 18 (Doob-Kolmogorov inequality) If S1, S2, · · · is a martin-

gale with respect to F , then for all ε > 0 we have

P
(

max
1≤k≤n

|Sk| ≥ ε
)
≤ ε−2E((Sn)2).

Theorem 19 (Martingale convergence theorem) If S1, S2, · · · is a mar-

tingale with respect to F and E((Sn)2)↗M <∞, then there exists a random

variable S such that Sn
a.s.→ S and Sn → S in mean square.

De�nition 20 (Cauchy sequence) A sequence of real numbers x1, x2, · · ·
is a Cauchy sequence if for all ε > 0 there exists an N such that for all

n ≥ m ≥ N , we have |xn − xm| < ε.
We know that a sequence is convergent if and only if it is a Cauchy sequence.

Theorem 21 Let S0, S1, · · · be a martingale with respect to F such that

S0 = 0 and E((Sn)2) <∞ for all n. De�ne

〈S〉n =

n∑
k=1

E((Sk − Sk−1)2|Fk−1) and 〈S〉∞ = lim
n→∞

〈S〉n.

Let f ≥ 1 be a given increasing function satisfying
∫∞
0 [f(x)]−2dx < ∞.

Then,

(i) On {ω : 〈S(ω)〉∞ <∞} Sn
a.s.→ S for some random variable S

(ii) On {ω : 〈S(ω)〉∞ =∞}, Sn/f(〈S〉n)
a.s.→ 0
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Theorem 22 (Strong Law of Large Numbers) Let X1, X2, · · · be i.i.d.
with E(X1) = µ and V ar(X1) = σ2 < ∞ and de�ne S0 = 0 and Sn =∑n

k=1(Xk − µ) for n ≥ 1. Then Sn
n

a.s.→ 0.

Theorem 23 (Martingale Central Limit theorem) S0, S1, · · · is a mar-

tingale with respect to F , with S0 = 0 and E((Sn)2) <∞ for all n. Assume

that n−1〈S〉n
P→ σ2 > 0 and for all ε > 0

1

n

n∑
k=1

E((Sk − Sk−1)211((Sk − Sk−1)2 > εn))→ 0.

Then, 1√
nσ2

Sn
d→ N (0, 1)

Theorem 24 (Optional stopping I) Let S1, S2, · · · be a martingale with

respect to F . If T is an a.s. bounded stopping time for F (i.e. P(T ≤ a) = 1
for some a ≥ 0), then E(ST ) = E(S1).

Theorem 25 (Optional stopping II) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the

following conditions hold

� P(T <∞) = 1,

� E(|ST |) <∞,

� E(Sn11(T > n))→ 0 as n→∞.

Theorem 26 (Optional Stopping III) Let S1, S2, · · · be a martingale with

respect to F and T a stopping time for F . Then E(ST ) = E(S1), if the fol-

lowing conditions hold

� E(T ) <∞,

� E(|Sn+1 − Sn||Fn) ≤ K for all n < T and some K > 0

Wald's equation and identity: If X1, X2, · · · are i.i.d. random variables

with E(X1) = µ <∞ and Sn =
∑n

k=1Xk and T is a stopping time satisfying

E(T ) <∞, then E(ST ) = µE(T ).
If in addition there exists a h > 0 such that M(t) = E(etX1) < ∞ for all

|t| < h and M(t) > 1 and |Sn| < C for some constant C > 0 and all n ≤ T ,
then E(etST [M(t)]−T ) = 1.


