Solutions second exam Probability III

November 25, 2020

Problem 1
(a) Provide the definition of a o-algebra defined on the sample space €2.(3p)

Solution: A collection of subsets of Q (say F) is s o-algebra if 1) Q € F, 2)
If A € F then also the complement A € F and 3) if Aj, Ag, - -- is a sequence
of elements of F then also U, A4, € F.

(b) Let F be the smallest o-algebra on € = (0, 1) containing all open inter-

vals contained in (0,1). Show that every single point 2 € (0, 1) is an element
of F. (4p)

Solution: Both (0,z) € F and (x,1) € F because they are open intervals.
Therefore, by the third defining property of a o-algebra, B = (0,z)U(z, 1) €
F and by the second defining property of a o-algebra B¢ = {x} € F.

(c) Let G be the smallest o-algebra on 2 = (0, 1) containing all single points
n (0,1). Show that G # F. That is, give an element of F which is not in G
and explain why this element is not in G. (5p)

Solution: The o-algebra generated by single points contains all countable
unions of single points and complements of those sets. Because countable
unions of countable sets are countable and a union containing at least one set
with a countable complement, has at most a countable complement, we have
that G only contains sets which have countably many elements or a count-
able complement. the interval (0,1/2) is therefore not in G because it has
uncountably many elements and its complement [1/2, 1) is also uncountable.



Problem 2

a) Let X be an exponential distributed random variable with expectation
1/\. That is, P(X > ) = ¢ ** for all z > 0. Provide the characteristic
function ¢x(t) of X. (3p)
Hint: You may assume without proof that ¢x(t) = 9(it), where i = v/—1
and ¢ (t) is the moment generating function of X.

Solution: The exponential distributed random variable has density function
f(x) = Xe™ for 2 > 0. Therefore, for t < .

o A
P(t) = /0 Ae el dy = T3

and px(t) = ﬁ

b) Let Y be a random variable with distribution defined through
PY=1)=PY =-1)=1/2.

Let Z = Y X. Deduce what ¢z(t), the characteristic function of Z, is. (3p)

Solution: The quick way is to note that

2
e ) b (A ) -

E itz — E[E itXYY — — .
(] = EE Y] o \N—it T axit) Nt

1
2

If you are less comfortable with complex numbers: Note that ¢z(t) =
E[cos(tZ)] 4 ¢E[sin(tZ)] and using the telescoping property of expectations.

E[cos(tZ)] = E[cos(tXY)] = E[E[cos(tXY)|Y]] = %E[cos(tX)}+%E[cos(—tX)].

Because cos(+) is symmetric, we have that E[cos(tX)] = E[cos(—tX)] and
E[cos(tZ)] = E[cos(tX)].
Similarly, by the anti-symmetry of sin(-), we have

Efsin(t2)] = %E[sin —tX)]+%E[sin(—tX)] _ %E[sin —tX)]—%IE[sin _iX)] = 0.
—0)X)

So, @wz(t) = E[cos(tX)] = w
that

1 A A\ A+t +(A—dt) A2
s"Z(t)_Q<A—¢t+A+z’t>_2( (A —it)(A =+ it) >_)\2+t2'

. Using part a) We then obtain




Let Y1,Ys, -+ and X4, Xo, - - - beindependent random variables, where Y7, Yo, - - -

are all distributed as Y and for k € N, X}, is exponentially distributed with
expectation 1/vk. For k € N, define Z;, = Y;, Xj.

c¢) Provide the characteristic function of W,, = \/b%gn Y p—1 Z. Use this to
show that W,, converges in distribution to some random variable as n — oc.
What is the distribution of this random variable? (6p)
Hint: You may use without proof that for a positive function ¢(n) > 0,
which decreases to 0 as n — oo, we have

ndWHQ+ﬁ§ﬁL
k=1

Solution: Define S, = >"}'_, Zj and let pg, (t) be its characteristic function,
while the characteristic function of Z,, is given by ¢z, (t) and @w, (t) is
defined similarly.

Because the Z,,’s are all independent we have that

s, () =[] z.().
k=1

Furthermore,
pw, (t) = ¢s,(t//1ogn).
So,

n

ow, (t) = [ [ ¢z (t/\/logn).

k=1

From part b) we know that ¢z, (t) = Hitg and thus that

: k

and thus that

LT o) where ¢(n) = t?/logn
@Wn(t)_kl;[l<1+ k)’ h (n) = t*/logn.

Now we can use the hint and observe that n=¢n) = ¢=c(n)logn — o—t*, So,

g2 1

—1
ow, (t)

(&

and thus ¢w, (t) — e, which is the characteristic function of a Normal
distribution with mean 0 and variance 1/2. Because convergence of the char-
acteristic functions implies convergence in distribution of the corresponding

random variables.



Problem 3

Assume in all subproblems that X, X7, Xo, - are random variables defined

on the same probability space {2, F,P}. Assume in both part a) and b) that
P

X, > X.

a) Show that there exists a non-random strictly increasing sequence of pos-

itive integers ny,ng, - - -, such that X, “% X as k — oc. (6p)

solution: We know that P(|X,, — X| > ¢) — 0, for all ¢ > 0. Then choose

ny such that
P(|X,, — X| > 1/k) < 1/k?

Now we observe that for all € > 0 we have
o0 [oe) ] 1
;P(IXW —X|>e < ;]P’ (ank - X|> mln(k,e)>

[1/c] 0
1
=S P( X - XIS+ > P<|Xnk ~X|> k)

k=1 k=|1/e]
[1/€] ) 1
<> 1+ > P<Xnk—X\>k)
k=1 k=[1/e]
) R 1 1 X1
<= P(|X, - X|>>-]<> —
_E+; (I . >k>_6+kZ:1k2<oo

a.s.

and by the first Borel-Cantelli Lemma we obtain that 1(|X,,, — X| >¢€) = 0
and by the hint it follows that X, XX,



b) Show that if g : R — R is a continuous function, then g(X,,) 5 9(X).(6p)
Hint: Note that if ¢ : R — R is continuous, then it is uniform continuous
on any interval [—M, M] with M € (0,00). That is, for all € > 0 there exist
d > 0 such that |g(z) —g(y)| < eif |x —y| < and z,y € [-M, M].

Solution: We need to prove that for all ¢ > 0 and all ¢; > 0 there exists
N € N such that P(|g(X,) — g(X)| > €) <€ foralln > N.

Fix € > 0 and €; > 0 and let M be such that P(|X| > M —1) < €1/2.

Let § € (0,1) be such that |g(x) —g(y)| < €if |[r—y| < § and z,y € [-M, M]
(which is possible by the hint).

Let N be such that P(|X,, — X| > J) < €1/2 for all n > N (which is possible
by Xn - X).

Then for n > N we have,

P(lg(Xn) —9(X)| > €)
= P(lg(Xn) = g(X)[ > & [X| > M = 1) + P(|g(Xn) — g(X)| > & [X]| < M — 1)
P(|X|>M —-1)
+P(lg(Xn) = g(X)| > € | Xy — X[ >0, | X[ < M - 1)
+P(l9(Xn) = 9(X)| > € [Xn = X[ <6, |X[ < M —1)

IA

The first summand is less than €;/2 by the definition of M. The second
summand is less than P(|X,, — X| > §), which is by the definition of N less
than €;/2. The third summand is 0, because if both | X, — X| < § and
|X| < M —1, then both |X| < M and |X,,| < M and by the definition of d,
|g(Xy) — g(X)| must be less than e. The result now follows.



Problem 4
Let A > 1 be constant. For 7,j € Ng let X;; be independent and identically
distributed random variables with a Poisson distribution with expectation

A. That is,
k

A
P(Xij = k) = Ee*A for k € Np.

Define Zy = 1. For i € Ny define

Z;
Ziy1 = E Xij,
=1

where we define 29:1 =0.

a) Show (e.g. by induction) that E[Z,] = A" and E[(Z,)?] = A"22=L for

all n € N. (4p)

Solution:

E[Z,] = E[E[Zp|Zn_1]] = AE[Zn_1] = --- = \"Zy = A"

E[(Zn)?] = E[E[(Zn)*| Zn-1]] = E[Zn-1A + (Zn410)?| Zn-1]]
= \E[Z,, 1] + NE[(Zn-1)%] = \" + N2E[(Z,-1)]

n 2/yn—1 2 2 n = k n>‘n+1 —1
= A" XA NE[(Zy0)?) == A" ) AR = e
k=0
b) Show that
1
Wn = EZn
converges almost surely to some random variable W. Furthermore, show
that P(WW < o0) = 1. (4p)

Solution: We use the martingale convergence theorem.
To do this we note that E[|W,|] = 1 for all n. Furthermore, E[W,11|Z,] =
AZ, /AT = W, and finally.

1

A= A"
A2n -

E[(Wn)Q] = o1

E[(Zn)?]
by part a). The right hand side increases to A/(A — 1) < co. So, we can use
the theorem and we now that W), converges almost surely and in mean square
(and therefore in mean) to some random variable W. Because W,, converges
to W in mean, we obtain that E[|W|] < E[|W,, — W[ + E[W,] — 0+ 1. If
P(W = o0) > 0 then E[W] > coP(W = c0) = 0o, which is a contradiction.



¢) Show that

converges almost surely to V = (372, A7) W = ﬁW (4p)

Solution: Note

n n

Vo=Y A0z =) A,

i=1 =1

We show that if for w € Q, we have that W,,(w) — W (w) then V,(w) — V(w).
Note that W, (w) — W (w) means that for all e > 0 there exists N € N such
that for all n > N we have |W,(w) — W(w)| < e.

Let Ny = Ni(w) € N be such that |W;(w) — W(w)| < € for all n > Nj.
Then for all n > Ny we have

Ni—1 n o]
Va(@)=V(@)| =] Y A (Wi(w)=W(w)+ D A" (Wi(w)=W (W)= AW (w)|.
=1 i=N1 i=n
By the triangle inequality we then obtain
Ni—1 ‘ n A o) A
Va(@)=V (@) A7 N Wiw)=W(w)|+ > A e+ A7 W (w)].
i=1 i=N i=n

The first summand converges to 0 for fixed N; and w. The second sum-
mand converges to €; Z?io = elﬁ. The third summand is equal to
)\*”ﬁW(w) which converges to 0 for fixed w. So, if W,(w) = W(w)
then for each € there exists No > NN such that for all n > Ny we have
[Vio(w) = V(w)] < 2€;.



Problem 5
Let p € (0,1) be constant and X1, Xo, -+ be independent and identically
distributed random variables, satisfying

P(X;=1)=p and PX;=-1)=1-p.

For reasons of convenience set Xg = —1. Forn € Nlet K,, =0if X,, = —1
and otherwise let K, be the length of the sequence of consecutive +1’s ending
at n. That is, K, = min{j € No; X,,_; = —1}.

Let L € N be a given integer. We are interested in ' = min{n € N; K,, = L},
which is the first time a sequence of L consecutive +1’s appears.

To study T we can use the loss (or gain, if negative) of a casino in which the
folowing happens:

1. At time 0 the loss of the casino is 0.

2. At each positive integer time point one new gambler arrives with gam-
bling capital 1 SEK which he or she puts immediately at stake.

3. At time k € N, if X = —1, all gamblers which were still in the casino
and arrived at time k or before, leave the casino empty handed.

4. At time k € N, if X}, = 1, all gamblers present at the casino (including
the one that arrived at time k) multiply their capital instantly by a
factor 1/p, which they will put again at stake at time &k + 1.

So, at time n (immediately after the arrival of the n-th gambler and the n-th
bet) the number of gamblers in the casino is K.



a) Show that the loss of the casino at time n (when the new arrival and time
n gambling has already occured) is given by

-K
n—1
YA s g
I—p
and show that My, Mo, -- constitutes a martingale with respect to JF, the
filtration generated by X1, Xo,---. (4p)

Solution: The total number of newly brought in money by gamblers is n
times 1 SEK. The last K, gamblers are still in the casino. For k € N, if
K, > k, the gambler that entered at time n — k + 1 has capital (1/p)* at
time n. The total loss of the casino is the the total capital of the gamblers
minus the ammount of money the gamblers brought in. Which is

K,
Sk g (AT -1 N )
St on= (MRS 1) = BT s,

n

We note that E[M,,] < % +n < oo for all n and

p_(Kn+1)_1
E[My41|Fn] =p ﬁ—("‘f‘l) + (1 —=p)(0—(n+1))
_Kni _Kni]_

and we showed that M, is a martingale.
b) Compute E[T]. You may use without proof that T is a stopping time
with respect to F and that E[T] < oc. (3p)

Solution: We note that for K,, < L (which is the case if n < T'), we have
| Myt — My| = p~Ent) 1 < p=Lif X, .1 =1 and we have

—Kp
—1 Ut _ ) < P )

p b
|Mn+1_Mn’: 1
-Pp

£ 1= (p
1—p + l—p(p

if X,,41 = —1. So, we can use Optimal Stopping theorem III (Thm 26 of
cheat sheet) and obtain that E[My] = My That is p_i? —E[T]=0.

1



c) Let s € [0,1] be a constant. Compute E[s7]. (5p)
Hint:A way to solve this might be to adapt step 2 above in such a way that
for all n € N, the customer arriving at time n has initial gambling capital
s"~!. Note that partial answers might be worth points.

Solution: If the gambler entering at time n comes in with capital s™, then
the total capital brought in by gamblers up to and including time n is

=\ 1—s"
g st =5—.

1—s
k=1

While if £ < K, the gambler that entered at time n — k + 1 is given by

s"F+1p=k S0, we can define the martingale
K
N _ 1—s" _(sp)~Hn —1 1—s"
Y., — n—k+1, -k e | .
" kZ:lS b s TP (sp)~1 —1 1
. Sn(sp)_K" -1 1-s" _ s(sp)~Hn — s n s s
1—sp 1—s 1—sp 1—s 1—s
We note that
E[Yy41]|Fn)]
— n+1 (Sp) _ s 1— 0— S
sp(s 1—sp ] >—|—s( P) 1-s
o1 (5p) 7 —sp 1= s

=S

1—sp y 1—s
—-K n

:Sn+1 <(82?)_|_1) —S< $ +Sn> :Yn
1—sp ]

Similarly E[Y,]] < s (p?:;n + ll_f:> < oo and from the gambler inter-
pretation we know that the if K, < L, the capital of the gamblers present

changes in step n + 1 at most

Kn Ky
> op Frmax((pt = 1), ) +p <D p i
k=1 k=1

while the total capital brought in changes by at most s. So the chang is
bounded and we can apply Thm 26 of cheat sheet. and obtain that E[Y7] =
E[Yy] = 0 (and thus =2E[Y7] = 0) , which gives

E[s] <((Sp)L e 1) ~ 1

1—sp
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