Solutions second exam Probability III

November 25, 2020

Problem 1

(a) Provide the definition of a σ-algebra defined on the sample space $\Omega .(3 \mathrm{p})$

Solution: A collection of subsets of Ω (say \mathcal{F}) is s σ-algebra if 1) $\Omega \in \mathcal{F}, 2$) If $A \in \mathcal{F}$ then also the complement $A^{c} \in \mathcal{F}$ and 3) if A_{1}, A_{2}, \cdots is a sequence of elements of \mathcal{F} then also $\cup_{n} A_{n} \in \mathcal{F}$.
(b) Let \mathcal{F} be the smallest σ-algebra on $\Omega=(0,1)$ containing all open intervals contained in $(0,1)$. Show that every single point $x \in(0,1)$ is an element of \mathcal{F}.

Solution: Both $(0, x) \in \mathcal{F}$ and $(x, 1) \in \mathcal{F}$ because they are open intervals. Therefore, by the third defining property of a σ-algebra, $B=(0, x) \cup(x, 1) \in$ \mathcal{F} and by the second defining property of a σ-algebra $B^{c}=\{x\} \in \mathcal{F}$.
(c) Let \mathcal{G} be the smallest σ-algebra on $\Omega=(0,1)$ containing all single points in $(0,1)$. Show that $\mathcal{G} \neq \mathcal{F}$. That is, give an element of \mathcal{F} which is not in \mathcal{G} and explain why this element is not in \mathcal{G}.

Solution: The σ-algebra generated by single points contains all countable unions of single points and complements of those sets. Because countable unions of countable sets are countable and a union containing at least one set with a countable complement, has at most a countable complement, we have that \mathcal{G} only contains sets which have countably many elements or a countable complement. the interval $(0,1 / 2)$ is therefore not in \mathcal{G} because it has uncountably many elements and its complement $[1 / 2,1)$ is also uncountable.

Problem 2

a) Let X be an exponential distributed random variable with expectation $1 / \lambda$. That is, $\mathbb{P}(X>x)=e^{-\lambda x}$ for all $x \geq 0$. Provide the characteristic function $\varphi_{X}(t)$ of X.
Hint: You may assume without proof that $\varphi_{X}(t)=\psi(i t)$, where $i=\sqrt{-1}$ and $\psi(t)$ is the moment generating function of X.

Solution: The exponential distributed random variable has density function $f(x)=\lambda e^{-\lambda x}$ for $x>0$. Therefore, for $t<\lambda$.

$$
\psi(t)=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{t x} d x=\frac{\lambda}{\lambda-t}
$$

and $\varphi_{X}(t)=\frac{\lambda}{\lambda-i t}$.
b) Let Y be a random variable with distribution defined through

$$
\mathbb{P}(Y=1)=\mathbb{P}(Y=-1)=1 / 2
$$

Let $Z=Y X$. Deduce what $\varphi_{Z}(t)$, the characteristic function of Z, is. (3p)
Solution: The quick way is to note that
$\mathbb{E}\left[e^{i t Z}\right]=\mathbb{E}\left[\mathbb{E}\left[e^{i t X Y} \mid Y\right]\right]=\frac{1}{2}\left(\mathbb{E}\left[e^{i t X}+e^{-i t X}\right)=\frac{1}{2}\left(\frac{\lambda}{\lambda-i t}+\frac{\lambda}{\lambda+i t}\right)=\frac{\lambda^{2}}{\lambda^{2}+t^{2}}\right.$.
If you are less comfortable with complex numbers: Note that $\varphi_{Z}(t)=$ $\mathbb{E}[\cos (t Z)]+i \mathbb{E}[\sin (t Z)]$ and using the telescoping property of expectations.
$\mathbb{E}[\cos (t Z)]=\mathbb{E}[\cos (t X Y)]=\mathbb{E}[\mathbb{E}[\cos (t X Y) \mid Y]]=\frac{1}{2} \mathbb{E}[\cos (t X)]+\frac{1}{2} \mathbb{E}[\cos (-t X)]$.
Because $\cos (\cdot)$ is symmetric, we have that $\mathbb{E}[\cos (t X)]=\mathbb{E}[\cos (-t X)]$ and $\mathbb{E}[\cos (t Z)]=\mathbb{E}[\cos (t X)]$.
Similarly, by the anti-symmetry of $\sin (\cdot)$, we have
$\left.\left.\left.\mathbb{E}[\sin (t Z)]=\frac{1}{2} \mathbb{E}[\sin -t X)\right]+\frac{1}{2} \mathbb{E}[\sin (-t X)]=\frac{1}{2} \mathbb{E}[\sin -t X)\right]-\frac{1}{2} \mathbb{E}[\sin -t X)\right]=0$.
So, $\varphi_{Z}(t)=\mathbb{E}[\cos (t X)]=\frac{\mathbb{E}\left[e^{i t X}\right]+\mathbb{E}\left[e^{i(-t) X}\right]}{2}$. Using part a) We then obtain that

$$
\varphi_{Z}(t)=\frac{1}{2}\left(\frac{\lambda}{\lambda-i t}+\frac{\lambda}{\lambda+i t}\right)=\frac{\lambda}{2}\left(\frac{(\lambda+i t)+(\lambda-i t)}{(\lambda-i t)(\lambda+i t)}\right)=\frac{\lambda^{2}}{\lambda^{2}+t^{2}}
$$

Let Y_{1}, Y_{2}, \cdots and X_{1}, X_{2}, \cdots be independent random variables, where Y_{1}, Y_{2}, \cdots are all distributed as Y and for $k \in \mathbb{N}, X_{k}$ is exponentially distributed with expectation $1 / \sqrt{k}$. For $k \in \mathbb{N}$, define $Z_{k}=Y_{k} X_{k}$.
c) Provide the characteristic function of $W_{n}=\frac{1}{\sqrt{\log n}} \sum_{k=1}^{n} Z_{k}$. Use this to show that W_{n} converges in distribution to some random variable as $n \rightarrow \infty$. What is the distribution of this random variable?
Hint: You may use without proof that for a positive function $c(n) \geq 0$, which decreases to 0 as $n \rightarrow \infty$, we have

$$
n^{-c(n)} \prod_{k=1}^{n}\left(1+\frac{c(n)}{k}\right) \rightarrow 1
$$

Solution: Define $S_{n}=\sum_{k=1}^{n} Z_{k}$ and let $\varphi_{S_{n}}(t)$ be its characteristic function, while the characteristic function of Z_{n} is given by $\varphi_{Z_{n}}(t)$ and $\varphi_{W_{n}}(t)$ is defined similarly.
Because the Z_{n} 's are all independent we have that

$$
\varphi_{S_{n}}(t)=\prod_{k=1}^{n} \varphi_{Z_{k}}(t)
$$

Furthermore,

$$
\varphi_{W_{n}}(t)=\varphi_{S_{n}}(t / \sqrt{\log n})
$$

So,

$$
\varphi_{W_{n}}(t)=\prod_{k=1}^{n} \varphi_{Z_{k}}(t / \sqrt{\log n})
$$

From part b) we know that $\varphi_{Z_{k}}(t)=\frac{k}{k+t^{2}}$ and thus that

$$
\varphi_{W_{n}}(t)=\prod_{k=1}^{n} \frac{k}{k+t^{2} / \log n}
$$

and thus that

$$
\frac{1}{\varphi_{W_{n}}(t)}=\prod_{k=1}^{n}\left(1+\frac{c(n)}{k}\right), \quad \text { where } c(n)=t^{2} / \log n
$$

Now we can use the hint and observe that $n^{-c(n)}=e^{-c(n) \log n}=e^{-t^{2}}$. So,

$$
e^{-t^{2}} \frac{1}{\varphi_{W_{n}}(t)} \rightarrow 1
$$

and thus $\varphi_{W_{n}}(t) \rightarrow e^{-t^{2}}$. which is the characteristic function of a Normal distribution with mean 0 and variance $1 / 2$. Because convergence of the characteristic functions implies convergence in distribution of the corresponding random variables.

Problem 3

Assume in all subproblems that X, X_{1}, X_{2}, \cdots are random variables defined on the same probability space $\{\Omega, \mathcal{F}, \mathbb{P}\}$. Assume in both part a) and b) that $X_{n} \xrightarrow{\mathbb{P}} X$.
a) Show that there exists a non-random strictly increasing sequence of positive integers n_{1}, n_{2}, \cdots, such that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$ as $k \rightarrow \infty$.
solution: We know that $\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$, for all $\epsilon>0$. Then choose n_{k} such that

$$
\mathbb{P}\left(\left|X_{n_{k}}-X\right|>1 / k\right)<1 / k^{2}
$$

Now we observe that for all $\epsilon>0$ we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\epsilon\right) \leq \sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\min \left(\frac{1}{k}, \epsilon\right)\right) \\
&=\sum_{k=1}^{\lfloor 1 / \epsilon\rfloor} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\epsilon\right)+\sum_{k=\lfloor 1 / \epsilon\rfloor}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\frac{1}{k}\right) \\
& \leq \sum_{k=1}^{\lfloor 1 / \epsilon\rfloor} 1+\sum_{k=\lfloor 1 / \epsilon\rfloor}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\frac{1}{k}\right) \\
& \leq \frac{1}{\epsilon}+\sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\frac{1}{k}\right) \leq \frac{1}{\epsilon}+\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty
\end{aligned}
$$

and by the first Borel-Cantelli Lemma we obtain that $\mathbb{1}\left(\left|X_{n_{k}}-X\right|>\epsilon\right) \xrightarrow{\text { a.s. }} 0$ and by the hint it follows that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$.
b) Show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, then $g\left(X_{n}\right) \xrightarrow{\mathbb{P}} g(X) .(6 \mathrm{p})$ Hint: Note that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then it is uniform continuous on any interval $[-M, M]$ with $M \in(0, \infty)$. That is, for all $\epsilon>0$ there exist $\delta>0$ such that $|g(x)-g(y)|<\epsilon$ if $|x-y|<\delta$ and $x, y \in[-M, M]$.

Solution: We need to prove that for all $\epsilon>0$ and all $\epsilon_{1}>0$ there exists $N \in \mathbb{N}$ such that $\mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon\right)<\epsilon_{1}$ for all $n>N$.
Fix $\epsilon>0$ and $\epsilon_{1}>0$ and let M be such that $\mathbb{P}(|X|>M-1)<\epsilon_{1} / 2$.
Let $\delta \in(0,1)$ be such that $|g(x)-g(y)|<\epsilon$ if $|x-y|<\delta$ and $x, y \in[-M, M]$ (which is possible by the hint).
Let N be such that $\mathbb{P}\left(\left|X_{n}-X\right| \geq \delta\right)<\epsilon_{1} / 2$ for all $n>N$ (which is possible by $X_{n} \xrightarrow{\mathbb{P}} X$).
Then for $n>N$ we have,

$$
\begin{aligned}
& \mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon\right) \\
= & \mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon,|X|>M-1\right)+\mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon,|X| \leq M-1\right) \\
\leq & \mathbb{P}(|X|>M-1) \\
& +\mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon,\left|X_{n}-X\right| \geq \delta,|X| \leq M-1\right) \\
& +\mathbb{P}\left(\left|g\left(X_{n}\right)-g(X)\right|>\epsilon,\left|X_{n}-X\right|<\delta,|X| \leq M-1\right)
\end{aligned}
$$

The first summand is less than $\epsilon_{1} / 2$ by the definition of M. The second summand is less than $\mathbb{P}\left(\left|X_{n}-X\right| \geq \delta\right)$, which is by the definition of N less than $\epsilon_{1} / 2$. The third summand is 0 , because if both $\left|X_{n}-X\right|<\delta$ and $|X|<M-1$, then both $|X|<M$ and $\left|X_{n}\right|<M$ and by the definition of δ, $\left|g\left(X_{n}\right)-g(X)\right|$ must be less than ϵ. The result now follows.

Problem 4

Let $\lambda>1$ be constant. For $i, j \in \mathbb{N}_{0}$ let $X_{i j}$ be independent and identically distributed random variables with a Poisson distribution with expectation λ. That is,

$$
\mathbb{P}\left(X_{i j}=k\right)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for } k \in \mathbb{N}_{0}
$$

Define $Z_{0}=1$. For $i \in \mathbb{N}_{0}$ define

$$
Z_{i+1}=\sum_{j=1}^{Z_{i}} X_{i j}
$$

where we define $\sum_{j=1}^{0}=0$.
a) Show (e.g. by induction) that $\mathbb{E}\left[Z_{n}\right]=\lambda^{n}$ and $\mathbb{E}\left[\left(Z_{n}\right)^{2}\right]=\lambda^{n} \frac{\lambda^{n+1}-1}{\lambda-1}$ for all $n \in \mathbb{N}$.

Solution:

$$
\begin{gathered}
\mathbb{E}\left[Z_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{n} \mid Z_{n-1}\right]\right]=\lambda \mathbb{E}\left[Z_{n-1}\right]=\cdots=\lambda^{n} Z_{0}=\lambda^{n} \\
\left.\mathbb{E}\left[\left(Z_{n}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(Z_{n}\right)^{2} \mid Z_{n-1}\right]\right]=\mathbb{E}\left[Z_{n-1} \lambda+\left(Z_{n+1} \lambda\right)^{2} \mid Z_{n-1}\right]\right] \\
=\lambda \mathbb{E}\left[Z_{n-1}\right]+\lambda^{2} \mathbb{E}\left[\left(Z_{n-1}\right)^{2}\right]=\lambda^{n}+\lambda^{2} \mathbb{E}\left[\left(Z_{n-1}\right)^{2}\right] \\
=\lambda^{n}+\lambda^{2}\left(\lambda^{n-1}+\lambda^{2} \mathbb{E}\left[\left(Z_{n-2}\right)^{2}\right]\right)=\cdots=\lambda^{n} \sum_{k=0}^{n} \lambda^{k}=\lambda^{n} \frac{\lambda^{n+1}-1}{\lambda-1}
\end{gathered}
$$

b) Show that

$$
W_{n}:=\frac{1}{\lambda^{n}} Z_{n}
$$

converges almost surely to some random variable W. Furthermore, show that $\mathbb{P}(W<\infty)=1$.

Solution: We use the martingale convergence theorem.
To do this we note that $\mathbb{E}\left[\left|W_{n}\right|\right]=1$ for all n. Furthermore, $\mathbb{E}\left[W_{n+1} \mid Z_{n}\right]=$ $\lambda Z_{n} / \lambda^{n+1}=W_{n}$ and finally.

$$
\mathbb{E}\left[\left(W_{n}\right)^{2}\right]=\frac{1}{\lambda^{2 n}} \mathbb{E}\left[\left(Z_{n}\right)^{2}\right]=\frac{\lambda-\lambda^{-n}}{\lambda-1}
$$

by part a). The right hand side increases to $\lambda /(\lambda-1)<\infty$. So, we can use the theorem and we now that W_{n} converges almost surely and in mean square (and therefore in mean) to some random variable W. Because W_{n} converges to W in mean, we obtain that $\mathbb{E}[|W|] \leq \mathbb{E}\left[\left|W_{n}-W\right|\right]+\mathbb{E}\left[W_{n}\right] \rightarrow 0+1$. If $\mathbb{P}(W=\infty)>0$ then $\mathbb{E}[W] \geq \infty \mathbb{P}(W=\infty)=\infty$, which is a contradiction.
c) Show that

$$
\begin{equation*}
V_{n}=\lambda^{-n} \sum_{i=1}^{n} Z_{i} \tag{4p}
\end{equation*}
$$

converges almost surely to $V=\left(\sum_{i=0}^{\infty} \lambda^{-i}\right) W=\frac{\lambda}{\lambda-1} W$.
Solution: Note

$$
V_{n}=\sum_{i=1}^{n} \lambda^{-(n-i)}\left(\lambda^{-i} Z_{i}\right)=\sum_{i=1}^{n} \lambda^{-(n-i)} W_{i} .
$$

We show that if for $\omega \in \Omega$, we have that $W_{n}(\omega) \rightarrow W(\omega)$ then $V_{n}(\omega) \rightarrow V(\omega)$. Note that $W_{n}(\omega) \rightarrow W(\omega)$ means that for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N$ we have $\left|W_{n}(\omega)-W(\omega)\right|<\epsilon$.
Let $N_{1}=N_{1}(\omega) \in \mathbb{N}$ be such that $\left|W_{i}(\omega)-W(\omega)\right|<\epsilon_{1}$ for all $n \geq N_{1}$.
Then for all $n>N_{1}$ we have
$\left|V_{n}(\omega)-V(\omega)\right|=\left|\sum_{i=1}^{N_{1}-1} \lambda^{-(n-i)}\left(W_{i}(\omega)-W(\omega)\right)+\sum_{i=N_{1}}^{n} \lambda^{-(n-i)}\left(W_{i}(\omega)-W(\omega)\right)-\sum_{i=n}^{\infty} \lambda^{-i} W(\omega)\right|$.
By the triangle inequality we then obtain
$\left|V_{n}(\omega)-V(\omega)\right| \leq \lambda^{-n} \sum_{i=1}^{N_{1}-1} \lambda^{i}\left|W_{i}(\omega)-W(\omega)\right|+\sum_{i=N_{1}}^{n} \lambda^{-(n-i)} \epsilon_{1}+\left|\sum_{i=n}^{\infty} \lambda^{-i} W(\omega)\right|$.
The first summand converges to 0 for fixed N_{1} and ω. The second summand converges to $\epsilon_{1} \sum_{j=0}^{\infty} \lambda^{-j}=\epsilon_{1} \frac{\lambda}{\lambda-1}$. The third summand is equal to $\lambda^{-n} \frac{\lambda}{\lambda-1} W(\omega)$ which converges to 0 for fixed ω. So, if $W_{n}(\omega) \rightarrow W(\omega)$ then for each ϵ_{1} there exists $N_{2}>N_{1}$ such that for all $n>N_{2}$ we have $\left|V_{n}(\omega)-V(\omega)\right| \leq 2 \epsilon_{1}$.

Problem 5

Let $p \in(0,1)$ be constant and X_{1}, X_{2}, \cdots be independent and identically distributed random variables, satisfying

$$
\mathbb{P}\left(X_{1}=1\right)=p \quad \text { and } \quad \mathbb{P}\left(X_{1}=-1\right)=1-p
$$

For reasons of convenience set $X_{0}=-1$. For $n \in \mathbb{N}$ let $K_{n}=0$ if $X_{n}=-1$ and otherwise let K_{n} be the length of the sequence of consecutive +1 's ending at n. That is, $K_{n}=\min \left\{j \in \mathbb{N}_{0} ; X_{n-j}=-1\right\}$.
Let $L \in \mathbb{N}$ be a given integer. We are interested in $T=\min \left\{n \in \mathbb{N} ; K_{n}=L\right\}$, which is the first time a sequence of L consecutive +1 's appears.
To study T we can use the loss (or gain, if negative) of a casino in which the folowing happens:

1. At time 0 the loss of the casino is 0 .
2. At each positive integer time point one new gambler arrives with gambling capital 1 SEK which he or she puts immediately at stake.
3. At time $k \in \mathbb{N}$, if $X_{k}=-1$, all gamblers which were still in the casino and arrived at time k or before, leave the casino empty handed.
4. At time $k \in \mathbb{N}$, if $X_{k}=1$, all gamblers present at the casino (including the one that arrived at time k) multiply their capital instantly by a factor $1 / p$, which they will put again at stake at time $k+1$.
So, at time n (immediately after the arrival of the n-th gambler and the n-th bet) the number of gamblers in the casino is K_{n}.
a) Show that the loss of the casino at time n (when the new arrival and time n gambling has already occured) is given by

$$
M_{n}=\frac{p^{-K_{n}}-1}{1-p}-n
$$

and show that M_{1}, M_{2}, \cdots constitutes a martingale with respect to $\underline{\mathcal{F}}$, the filtration generated by X_{1}, X_{2}, \cdots.

Solution: The total number of newly brought in money by gamblers is n times 1 SEK . The last K_{n} gamblers are still in the casino. For $k \in \mathbb{N}$, if $K_{n} \geq k$, the gambler that entered at time $n-k+1$ has capital $(1 / p)^{k}$ at time n. The total loss of the casino is the the total capital of the gamblers minus the ammount of money the gamblers brought in. Which is

$$
\sum_{k=1}^{K_{n}}(1 / p)^{k}-n=\left(\frac{(1 / p)^{K_{n}+1}-1}{1 / p-1}-1\right)-n=\frac{(1 / p)^{K_{n}}-1}{1-p}-n=M_{n}
$$

We note that $\mathbb{E}\left[M_{n}\right] \leq \frac{(1 / p)^{n}-1}{1-p}+n<\infty$ for all n and

$$
\begin{array}{r}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=p\left(\frac{p^{-\left(K_{n}+1\right)}-1}{1-p}-(n+1)\right)+(1-p)(0-(n+1)) \\
=\frac{p^{-K_{n}}-p}{1-p}-(n+1)=\frac{p^{-K_{n}}-1}{1-p}-n=M_{n}
\end{array}
$$

and we showed that M_{n} is a martingale.
b) Compute $\mathbb{E}[T]$. You may use without proof that T is a stopping time with respect to $\underline{\mathcal{F}}$ and that $\mathbb{E}[T]<\infty$.

Solution: We note that for $K_{n}<L$ (which is the case if $n<T$), we have $\left|M_{n+1}-M_{n}\right|=p^{-\left(K_{n}+1\right)}-1<p^{-L}$ if $X_{n+1}=1$ and we have

$$
\left|M_{n+1}-M_{n}\right|=\frac{p^{-K_{n}}-1}{1-p}+1=\frac{p}{1-p}\left(p^{-\left(K_{n}+1\right)}-1\right)<\frac{p}{1-p} p^{-(L)}
$$

if $X_{n+1}=-1$. So, we can use Optimal Stopping theorem III (Thm 26 of cheat sheet) and obtain that $\mathbb{E}\left[M_{T}\right]=M_{0}$ That is $\frac{p^{-L}-1}{1-p}-\mathbb{E}[T]=0$.
c) Let $s \in[0,1]$ be a constant. Compute $\mathbb{E}\left[s^{T}\right]$.

Hint:A way to solve this might be to adapt step 2 above in such a way that for all $n \in \mathbb{N}$, the customer arriving at time n has initial gambling capital s^{n-1}. Note that partial answers might be worth points.

Solution: If the gambler entering at time n comes in with capital s^{n}, then the total capital brought in by gamblers up to and including time n is

$$
\sum_{k=1}^{n} s^{k}=s \frac{1-s^{n}}{1-s}
$$

While if $k \leq K_{n}$ the gambler that entered at time $n-k+1$ is given by $s^{n-k+1} p^{-k}$. So, we can define the martingale

$$
\begin{aligned}
& Y_{n}=\sum_{k=1}^{K_{n}} s^{n-k+1} p^{-k}-s \frac{1-s^{n}}{1-s}=s^{n} p^{-1} \frac{(s p)^{-K_{n}}-1}{(s p)^{-1}-1}-s \frac{1-s^{n}}{1-s} \\
& =s\left(s^{n} \frac{(s p)^{-K_{n}}-1}{1-s p}-\frac{1-s^{n}}{1-s}\right)=s^{n}\left(\frac{s(s p)^{-K_{n}}-s}{1-s p}+\frac{s}{1-s}\right)-\frac{s}{1-s}
\end{aligned}
$$

We note that

$$
\begin{aligned}
& \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \\
& =s p\left(s^{n+1} \frac{(s p)^{-\left(K_{n}+1\right)}-1}{1-s p}-\frac{1-s^{n+1}}{1-s}\right)+s(1-p)\left(0-\frac{1-s^{n+1}}{1-s}\right) \\
& =s^{n+1} \frac{(s p)^{-K_{n}}-s p}{1-s p}-s \frac{1-s^{n+1}}{1-s} \\
& =s^{n+1}\left(\frac{(s p)^{-K_{n}}-1}{1-s p}+1\right)-s\left(\frac{1-s^{n}}{1-s}+s^{n}\right)=Y_{n}
\end{aligned}
$$

Similarly $\mathbb{E}\left[\left|Y_{n}\right|\right]<s\left(\frac{p^{-n}-s^{n}}{1-s p}+\frac{1-s^{n}}{1-s}\right)<\infty$ and from the gambler interpretation we know that the if $K_{n}<L$, the capital of the gamblers present changes in step $n+1$ at most

$$
\sum_{k=1}^{K_{n}} p^{-K_{n}} \max \left(\left(p^{-1}-1\right), 1\right)+p^{-1}<\sum_{k=1}^{K_{n}} p^{-L}+p^{-1}
$$

while the total capital brought in changes by at most s. So the chang is bounded and we can apply Thm 26 of cheat sheet. and obtain that $\mathbb{E}\left[Y_{T}\right]=$ $\mathbb{E}\left[Y_{0}\right]=0$ (and thus $\frac{1-s}{s} \mathbb{E}\left[Y_{T}\right]=0$), which gives

$$
\mathbb{E}\left[s^{T}\right]\left(\left((s p)^{-L}-1\right) \frac{1-s}{1-s p}+1\right)=1
$$

