
Solutions second exam Probability III

November 25, 2020

Problem 1

(a) Provide the de�nition of a σ-algebra de�ned on the sample space Ω.(3p)

Solution: A collection of subsets of Ω (say F) is s σ-algebra if 1) Ω ∈ F , 2)
If A ∈ F then also the complement Ac ∈ F and 3) if A1, A2, · · · is a sequence
of elements of F then also ∪nAn ∈ F .

(b) Let F be the smallest σ-algebra on Ω = (0, 1) containing all open inter-

vals contained in (0, 1). Show that every single point x ∈ (0, 1) is an element

of F . (4p)

Solution: Both (0, x) ∈ F and (x, 1) ∈ F because they are open intervals.

Therefore, by the third de�ning property of a σ-algebra, B = (0, x)∪(x, 1) ∈
F and by the second de�ning property of a σ-algebra Bc = {x} ∈ F .

(c) Let G be the smallest σ-algebra on Ω = (0, 1) containing all single points
in (0, 1). Show that G 6= F . That is, give an element of F which is not in G
and explain why this element is not in G. (5p)

Solution: The σ-algebra generated by single points contains all countable

unions of single points and complements of those sets. Because countable

unions of countable sets are countable and a union containing at least one set

with a countable complement, has at most a countable complement, we have

that G only contains sets which have countably many elements or a count-

able complement. the interval (0, 1/2) is therefore not in G because it has

uncountably many elements and its complement [1/2, 1) is also uncountable.
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Problem 2

a) Let X be an exponential distributed random variable with expectation

1/λ. That is, P(X > x) = e−λx for all x ≥ 0. Provide the characteristic

function ϕX(t) of X. (3p)

Hint: You may assume without proof that ϕX(t) = ψ(it), where i =
√
−1

and ψ(t) is the moment generating function of X.

Solution: The exponential distributed random variable has density function

f(x) = λe−λx for x > 0. Therefore, for t < λ.

ψ(t) =

∫ ∞
0

λe−λxetxdx =
λ

λ− t

and ϕX(t) = λ
λ−it .

b) Let Y be a random variable with distribution de�ned through

P(Y = 1) = P(Y = −1) = 1/2.

Let Z = Y X. Deduce what ϕZ(t), the characteristic function of Z, is. (3p)

Solution: The quick way is to note that

E[eitZ ] = E[E[eitXY |Y ]] =
1

2

(
E[eitX + e−itX

)
=

1

2

(
λ

λ− it
+

λ

λ+ it

)
=

λ2

λ2 + t2
.

If you are less comfortable with complex numbers: Note that ϕZ(t) =
E[cos(tZ)] + iE[sin(tZ)] and using the telescoping property of expectations.

E[cos(tZ)] = E[cos(tXY )] = E[E[cos(tXY )|Y ]] =
1

2
E[cos(tX)]+

1

2
E[cos(−tX)].

Because cos(·) is symmetric, we have that E[cos(tX)] = E[cos(−tX)] and
E[cos(tZ)] = E[cos(tX)].
Similarly, by the anti-symmetry of sin(·), we have

E[sin(tZ)] =
1

2
E[sin−tX)]+

1

2
E[sin(−tX)] =

1

2
E[sin−tX)]−1

2
E[sin−tX)] = 0.

So, ϕZ(t) = E[cos(tX)] = E[eitX ]+E[ei(−t)X ]
2 . Using part a) We then obtain

that

ϕZ(t) =
1

2

(
λ

λ− it
+

λ

λ+ it

)
=
λ

2

(
(λ+ it) + (λ− it)

(λ− it)(λ+ it)

)
=

λ2

λ2 + t2
.
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Let Y1, Y2, · · · andX1, X2, · · · be independent random variables, where Y1, Y2, · · ·
are all distributed as Y and for k ∈ N, Xk is exponentially distributed with

expectation 1/
√
k. For k ∈ N, de�ne Zk = YkXk.

c) Provide the characteristic function of Wn = 1√
logn

∑n
k=1 Zk. Use this to

show that Wn converges in distribution to some random variable as n→∞.

What is the distribution of this random variable? (6p)

Hint: You may use without proof that for a positive function c(n) ≥ 0,
which decreases to 0 as n→∞, we have

n−c(n)
n∏
k=1

(
1 +

c(n)

k

)
→ 1.

Solution: De�ne Sn =
∑n

k=1 Zk and let ϕSn(t) be its characteristic function,
while the characteristic function of Zn is given by ϕZn(t) and ϕWn(t) is

de�ned similarly.

Because the Zn's are all independent we have that

ϕSn(t) =
n∏
k=1

ϕZk
(t).

Furthermore,

ϕWn(t) = ϕSn(t/
√

log n).

So,

ϕWn(t) =
n∏
k=1

ϕZk
(t/
√

log n).

From part b) we know that ϕZk
(t) = k

k+t2
and thus that

ϕWn(t) =
n∏
k=1

k

k + t2/ log n

and thus that

1

ϕWn(t)
=

n∏
k=1

(
1 +

c(n)

k

)
, where c(n) = t2/ log n.

Now we can use the hint and observe that n−c(n) = e−c(n) logn = e−t
2
. So,

e−t
2 1

ϕWn(t)
→ 1

and thus ϕWn(t) → e−t
2
. which is the characteristic function of a Normal

distribution with mean 0 and variance 1/2. Because convergence of the char-
acteristic functions implies convergence in distribution of the corresponding

random variables.
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Problem 3

Assume in all subproblems that X,X1, X2, · · · are random variables de�ned

on the same probability space {Ω,F ,P}. Assume in both part a) and b) that

Xn
P→ X.

a) Show that there exists a non-random strictly increasing sequence of pos-

itive integers n1, n2, · · · , such that Xnk

a.s.→ X as k →∞. (6p)

solution: We know that P(|Xn −X| > ε) → 0, for all ε > 0. Then choose

nk such that

P(|Xnk
−X| > 1/k) < 1/k2

Now we observe that for all ε > 0 we have

∞∑
k=1

P(|Xnk
−X| > ε) ≤

∞∑
k=1

P
(
|Xnk

−X| > min(
1

k
, ε)

)

=

b1/εc∑
k=1

P (|Xnk
−X| > ε) +

∞∑
k=b1/εc

P
(
|Xnk

−X| > 1

k

)

≤
b1/εc∑
k=1

1 +

∞∑
k=b1/εc

P
(
|Xnk

−X| > 1

k

)

≤ 1

ε
+

∞∑
k=1

P
(
|Xnk

−X| > 1

k

)
≤ 1

ε
+

∞∑
k=1

1

k2
<∞

and by the �rst Borel-Cantelli Lemma we obtain that 11(|Xnk
−X| > ε)

a.s.→ 0

and by the hint it follows that Xnk

a.s.→ X.
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b) Show that if g : R→ R is a continuous function, then g(Xn)
P→ g(X).(6p)

Hint: Note that if g : R → R is continuous, then it is uniform continuous

on any interval [−M,M ] with M ∈ (0,∞). That is, for all ε > 0 there exist

δ > 0 such that |g(x)− g(y)| < ε if |x− y| < δ and x, y ∈ [−M,M ].

Solution: We need to prove that for all ε > 0 and all ε1 > 0 there exists

N ∈ N such that P(|g(Xn)− g(X)| > ε) < ε1 for all n > N .

Fix ε > 0 and ε1 > 0 and let M be such that P(|X| > M − 1) < ε1/2.
Let δ ∈ (0, 1) be such that |g(x)−g(y)| < ε if |x−y| < δ and x, y ∈ [−M,M ]
(which is possible by the hint).

Let N be such that P(|Xn−X| ≥ δ) < ε1/2 for all n > N (which is possible

by Xn
P→ X).

Then for n > N we have,

P(|g(Xn)− g(X)| > ε)

= P(|g(Xn)− g(X)| > ε, |X| > M − 1) + P(|g(Xn)− g(X)| > ε, |X| ≤M − 1)

≤ P(|X| > M − 1)

+P(|g(Xn)− g(X)| > ε, |Xn −X| ≥ δ, |X| ≤M − 1)

+P(|g(Xn)− g(X)| > ε, |Xn −X| < δ, |X| ≤M − 1)

The �rst summand is less than ε1/2 by the de�nition of M . The second

summand is less than P(|Xn −X| ≥ δ), which is by the de�nition of N less

than ε1/2. The third summand is 0, because if both |Xn − X| < δ and

|X| < M − 1, then both |X| < M and |Xn| < M and by the de�nition of δ,
|g(Xn)− g(X)| must be less than ε. The result now follows.
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Problem 4

Let λ > 1 be constant. For i, j ∈ N0 let Xij be independent and identically

distributed random variables with a Poisson distribution with expectation

λ. That is,

P(Xij = k) =
λk

k!
e−λ for k ∈ N0.

De�ne Z0 = 1. For i ∈ N0 de�ne

Zi+1 =

Zi∑
j=1

Xij ,

where we de�ne
∑0

j=1 = 0.

a) Show (e.g. by induction) that E[Zn] = λn and E[(Zn)2] = λn λ
n+1−1
λ−1 for

all n ∈ N. (4p)

Solution:

E[Zn] = E[E[Zn|Zn−1]] = λE[Zn−1] = · · · = λnZ0 = λn.

E[(Zn)2] = E[E[(Zn)2|Zn−1]] = E[Zn−1λ+ (Zn+1λ)2|Zn−1]]
= λE[Zn−1] + λ2E[(Zn−1)

2] = λn + λ2E[(Zn−1)
2]

= λn + λ2(λn−1 + λ2E[(Zn−2)
2]) = · · · = λn

n∑
k=0

λk = λn
λn+1 − 1

λ− 1
.

b) Show that

Wn :=
1

λn
Zn

converges almost surely to some random variable W . Furthermore, show

that P(W <∞) = 1. (4p)

Solution: We use the martingale convergence theorem.

To do this we note that E[|Wn|] = 1 for all n. Furthermore, E[Wn+1|Zn] =
λZn/λ

n+1 = Wn and �nally.

E[(Wn)2] =
1

λ2n
E[(Zn)2] =

λ− λ−n

λ− 1
,

by part a). The right hand side increases to λ/(λ− 1) <∞. So, we can use

the theorem and we now thatWn converges almost surely and in mean square

(and therefore in mean) to some random variable W . Because Wn converges

to W in mean, we obtain that E[|W |] ≤ E[|Wn −W |] + E[Wn] → 0 + 1. If

P(W =∞) > 0 then E[W ] ≥ ∞P(W =∞) =∞, which is a contradiction.
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c) Show that

Vn = λ−n
n∑
i=1

Zi

converges almost surely to V =
(∑∞

i=0 λ
−i)W = λ

λ−1W . (4p)

Solution: Note

Vn =
n∑
i=1

λ−(n−i)(λ−iZi) =
n∑
i=1

λ−(n−i)Wi.

We show that if for ω ∈ Ω, we have thatWn(ω)→W (ω) then Vn(ω)→ V (ω).
Note that Wn(ω)→W (ω) means that for all ε > 0 there exists N ∈ N such

that for all n > N we have |Wn(ω)−W (ω)| < ε.
Let N1 = N1(ω) ∈ N be such that |Wi(ω) −W (ω)| < ε1 for all n ≥ N1.

Then for all n > N1 we have

|Vn(ω)−V (ω)| = |
N1−1∑
i=1

λ−(n−i)(Wi(ω)−W (ω))+
n∑

i=N1

λ−(n−i)(Wi(ω)−W (ω))−
∞∑
i=n

λ−iW (ω)|.

By the triangle inequality we then obtain

|Vn(ω)−V (ω)| ≤ λ−n
N1−1∑
i=1

λi|Wi(ω)−W (ω)|+
n∑

i=N1

λ−(n−i)ε1+|
∞∑
i=n

λ−iW (ω)|.

The �rst summand converges to 0 for �xed N1 and ω. The second sum-

mand converges to ε1
∑∞

j=0 λ
−j = ε1

λ
λ−1 . The third summand is equal to

λ−n λ
λ−1W (ω) which converges to 0 for �xed ω. So, if Wn(ω) → W (ω)

then for each ε1 there exists N2 > N1 such that for all n > N2 we have

|Vn(ω)− V (ω)| ≤ 2ε1.
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Problem 5

Let p ∈ (0, 1) be constant and X1, X2, · · · be independent and identically

distributed random variables, satisfying

P(X1 = 1) = p and P(X1 = −1) = 1− p.

For reasons of convenience set X0 = −1. For n ∈ N let Kn = 0 if Xn = −1
and otherwise letKn be the length of the sequence of consecutive +1's ending
at n. That is, Kn = min{j ∈ N0;Xn−j = −1}.
Let L ∈ N be a given integer. We are interested in T = min{n ∈ N;Kn = L},
which is the �rst time a sequence of L consecutive +1's appears.
To study T we can use the loss (or gain, if negative) of a casino in which the

folowing happens:

1. At time 0 the loss of the casino is 0.

2. At each positive integer time point one new gambler arrives with gam-

bling capital 1 SEK which he or she puts immediately at stake.

3. At time k ∈ N, if Xk = −1, all gamblers which were still in the casino

and arrived at time k or before, leave the casino empty handed.

4. At time k ∈ N, if Xk = 1, all gamblers present at the casino (including
the one that arrived at time k) multiply their capital instantly by a

factor 1/p, which they will put again at stake at time k + 1.

So, at time n (immediately after the arrival of the n-th gambler and the n-th
bet) the number of gamblers in the casino is Kn.
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a) Show that the loss of the casino at time n (when the new arrival and time

n gambling has already occured) is given by

Mn =
p−Kn − 1

1− p
− n

and show that M1,M2, · · · constitutes a martingale with respect to F , the
�ltration generated by X1, X2, · · · . (4p)

Solution: The total number of newly brought in money by gamblers is n
times 1 SEK. The last Kn gamblers are still in the casino. For k ∈ N, if
Kn ≥ k, the gambler that entered at time n − k + 1 has capital (1/p)k at

time n. The total loss of the casino is the the total capital of the gamblers

minus the ammount of money the gamblers brought in. Which is

Kn∑
k=1

(1/p)k − n =

(
(1/p)Kn+1 − 1

1/p− 1
− 1

)
− n =

(1/p)Kn − 1

1− p
− n = Mn

.

We note that E[Mn] ≤ (1/p)n−1
1−p + n <∞ for all n and

E[Mn+1|Fn] = p

(
p−(Kn+1) − 1

1− p
− (n+ 1)

)
+ (1− p)(0− (n+ 1))

=
p−Kn − p

1− p
− (n+ 1) =

p−Kn − 1

1− p
− n = Mn,

and we showed that Mn is a martingale.

b) Compute E[T ]. You may use without proof that T is a stopping time

with respect to F and that E[T ] <∞. (3p)

Solution: We note that for Kn < L (which is the case if n < T ), we have

|Mn+1 −Mn| = p−(Kn+1) − 1 < p−L if Xn+1 = 1 and we have

|Mn+1 −Mn| =
p−Kn − 1

1− p
+ 1 =

p

1− p
(p−(Kn+1) − 1) <

p

1− p
p−(L)

if Xn+1 = −1. So, we can use Optimal Stopping theorem III (Thm 26 of

cheat sheet) and obtain that E[MT ] = M0 That is p−L−1
1−p − E[T ] = 0.
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c) Let s ∈ [0, 1] be a constant. Compute E[sT ]. (5p)

Hint:A way to solve this might be to adapt step 2 above in such a way that

for all n ∈ N, the customer arriving at time n has initial gambling capital

sn−1. Note that partial answers might be worth points.

Solution: If the gambler entering at time n comes in with capital sn, then
the total capital brought in by gamblers up to and including time n is

n∑
k=1

sk = s
1− sn

1− s
.

While if k ≤ Kn the gambler that entered at time n − k + 1 is given by

sn−k+1p−k. So, we can de�ne the martingale

Yn =

Kn∑
k=1

sn−k+1p−k − s1− sn

1− s
= snp−1

(sp)−Kn − 1

(sp)−1 − 1
− s1− sn

1− s

= s

(
sn

(sp)−Kn − 1

1− sp
− 1− sn

1− s

)
= sn

(
s(sp)−Kn − s

1− sp
+

s

1− s

)
− s

1− s
.

We note that

E[Yn+1|Fn]

= sp

(
sn+1 (sp)−(Kn+1) − 1

1− sp
− 1− sn+1

1− s

)
+ s(1− p)

(
0− 1− sn+1

1− s

)
= sn+1 (sp)−Kn − sp

1− sp
− s1− sn+1

1− s

= sn+1

(
(sp)−Kn − 1

1− sp
+ 1

)
− s

(
1− sn

1− s
+ sn

)
= Yn.

Similarly E[|Yn|] < s
(
p−n−sn
1−sp + 1−sn

1−s

)
< ∞ and from the gambler inter-

pretation we know that the if Kn < L, the capital of the gamblers present

changes in step n+ 1 at most

Kn∑
k=1

p−Kn max((p−1 − 1), 1) + p−1 <

Kn∑
k=1

p−L + p−1,

while the total capital brought in changes by at most s. So the chang is

bounded and we can apply Thm 26 of cheat sheet. and obtain that E[YT ] =
E[Y0] = 0 (and thus 1−s

s E[YT ] = 0) , which gives

E[sT ]

(
((sp)−L − 1)

1− s
1− sp

+ 1

)
= 1.
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