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At home exam

Instructions: Work alone. You are allowed to use the textbook and the class notes. You can quote
results from the textbook and from the class, but state clearly which result you are using. You are not
allowed to search the internet for solutions or hints.

Justify all your answers with a proof or a counterexample. A simple Yes or No answer, even if correct,
may get partial or no credit.

Problems have multiple parts. In some cases, later parts depend on earlier ones. Even if you could not
do the earlier parts, you are allowed to use the results of the earlier parts in the later parts.

On the first page, please have the following:

• Name

• Social security number

• Write out and sign the following pledge: On my honor as a student I have not received help or
used inappropriate resources on this exam.

• List the problems that you have attempted.

Start each problem on a new page (but it is not necessary to start each part of a problem on a new
page). Write at the top of each page which problem it belongs to.

1. Let X = [0, 2]. Define a topology on X as follows: A set U ⊂ X is open in X, if U = ∅ or
if [0, 1] ⊂ U (you do not need to prove that this really is a topology on X). Determine, with
justification, whether X is

(a) [2 pts] compact.

Solution: No. For every x ∈ X\[0, 1], let Ux = [0, 1]∪{x}. The collections of sets {Ux}x∈X\[0,1]
is an infinite open cover of X, that clearly does not have any subcovers.

(b) [1 pt] connected.

Solution: Yes. Any two non-empty open subsets of X have a non-empty intersection, which
implies that X does not have a separation.

(c) [1 pt] Hausdorff.

Solution: No. Points in [0, 1] can not be separated by disjoint open neighborhoods.

(d) [1 pt] metrizable.

Solution: No, because X is not Hausdorff.

(e) [2 pts] first countable.

Solution: Yes. Every point x ∈ X has a local basis consisting of one open neighborhood. For
x ∈ [0, 1] the set [0, 1] forms a local basis. For x ∈ X \ {x}, the set {x} forms a local basis.

(f) [2 pts] second countable.

Solution: No. For every x ∈ X \ [0, 1], the set {x} must be an element of every basis of this
topology. So every basis has uncountably many elements.
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2. Let X be a topological space, and A ⊂ X a subspace. Define the (not necessarily continuous)
function χA : X → R as follows

χA(x) =

{
1 x ∈ A
0 x /∈ A

(a) [2 pts] Let x ∈ X. Prove that χA is continuous at x if and only if x /∈ ∂A. (To fix a slight
misstatement in the exam, a function f is said to be continuous at a point x if for every open
neighborhood V of f(x), f−1(V ) contains an open neighborhood of x).

Solution: Suppose first that x /∈ ∂A. Then either x ∈ int(A) or x ∈ int(X \ A). In either
case, x is an element of an open set, let’s call it U , on which χA is constant, and therefore
continuous. It follows that for any open neighborhood V of χA(x), χ−1A (V ) ∩ U is an open
subset of U . But U us open in X, so χ−1A (V )∩U is an open subset of X. But this means that
χ−1A (V ) contains an open neighborhood of x, so χA is continuous at x.

Now suppose that x ∈ ∂A. We want to prove that χA is not continuous at x. By assumption,
x ∈ A ∩ X \ A. On the other hand, x is in A or in X \ A, but not both. Let us suppose
that x ∈ A. Then χA(x) = 1. Let V = (1/2, 3/2). Then χ−1A (V ) = A. But x ∈ X \ A, so
every open neighborhood U of x contains a point in X \ A. In other words A, also known as
χ−1A (V ), does not contain any open neighborhood of x. So χA is not continuous at x. The
case x ∈ X \ A is done similarly.

(b) [2 pts] Prove that χA is a continuous function if and only if A is both open and closed.

Solution: By part (a) χA is continuous if and only if ∂A = ∅. In other words, if and only if
A∩X \ A = ∅. Suppose this holds. Since every point of X is either in A or in X \A, it follows
immediately that A = A and X \ A = X \ A. In this case A and X \ A are both closed, and
therefore also both open. This proves the only if direction. For the if direction, suppose A is
both open and closed. Then it follows that ∂A = A ∩X \ A = A ∩ (X \A) = ∅, and so χA is
continuous.

3. [4 pts] Let Rl be the real line, with the topology generated by the basis of sets of the form [a, b).
Let

X = [2, 3] ∪ {− 1

n
| n = 1, 2, 3, . . .}.

Find the interior and the closure of X in Rl.

Solution: First we claim that the interior of X is [2, 3). First of all, it is clear that [2, 3) is open
in Rl, and is a subset of X. It follows that [2, 3) is contained in the interior of X. To prove that
[2, 3) equals the interior of X, we need to show that none of the points of X \ [2, 3) is an interior
point of X. It is clear that 3 is not an interior point, because every open neighborhood of 3 will
contain points greater than 3, that are not in X. Similarly, none of the points − 1

n
is an interior

point, because every open neighborhood of − 1
n

will contain points − 1
n
< y < − 1

n+1
that are not in

X.

Second, we claim that X is closed, and therefore X = X. To prove that X is closed, we need to
prove that the complement of X is open. But the complement of X equals to the following union

(−∞,−1) ∪
∞⋃
n=1

(− 1

n
,− 1

n+ 1
) ∪ [0, 1) ∪ (3,∞).
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It is easy to see that each one of these sets is open in Rl, and therefore their union is open in Rl.

4. [5 pts] LetX be a topological space satisfying the following property: For every two points a, b ∈ X,
there exists a finite sequence of connected subspaces C1, . . . , Cn of X such that a ∈ C1, b ∈ Cn and
Ci ∩ Ci+1 6= ∅ for all i = 1, . . . , n− 1. Prove that X is connected.

Solution: First, let us prove that for C1, . . . , Cn as specified in the problem, the union C1∪ . . .∪Cn

is always connected. Suppose U, V are disjoint open subsets of C1 ∪ . . . ∪ Cn, whose union is
C1 ∪ . . . ∪ Cn. Since Ci are connected, each Ci is either a subset of U or of V . Without loss of
generality C1 ⊂ U . But then C2 has at least one point in U , and therefore C2 ⊂ U . By induction,
Ci ⊂ U for all i, and V = ∅. This proves that C1 ∪ . . . ∪ Cn is connected.

Now we know that for every two points a, b ∈ X, there exists a connected subset of X that contains
both a and b. It follows that every two points of X are in the same connected component of X.
So X has one connected component, which means that X is connected.

5. Let S2 be a sphere, and let a, b ∈ S2 be two distinct points. Let S2/{a, b} be the quotient space of
S2 by the relation that identifies a and b.

(a) [3 pts] Describe a CW structure on S2/{a, b}. Specify clearly how many cells of each dimension
there are.

Solution: Choose a circle passing through a, b that separates S2 in two components. For
example it could be the great circle through a and b. S2 has a cell structure, with

• two zero-cells: a and b

• two one-cells: the two arcs of the circle connecting a and b.

• two two-cells: the two hemispheres of S2 intersecting at the circle.

It follows that S2/{a, b} has a cell structure with a single one-cell - the class [a, b], two one-cells
and two two-cells.

(b) [1 pt] Compute the Euler characteristic of S2/{a, b}.
Solution: The Euler characteristic is 1− 2 + 2 = 1.

6. Let S2 be the two-dimensional sphere and let T be the torus. Let x1, x2, x3 ∈ S2 be three distinct
points. Let S2 \ {x1, x2, x3} denote the complement of three points in S2 (do not confuse it with
the quotient space of the previous question).

(a) [2 pts] Use the van Kampen theorem to prove that π1(S
2 \ {x1, x2, x3}) is isomorphic to the

free group on 2 generators.

Solution: We know that S2 \ {x1} is homeomorphic to R2. Therefore S2 \ {x1, x2, x3} is
homeomorphic to the complement of two points in the plane. Without loss of generality we
may take these points to be (−2, 0) and (0, 2). So we need to apply the SVK theorem to
R2 \ {(−2, 0), (0, 2)}.
Let U = {(x, y) ∈ R2 \ {(−2, 0), (0, 2)} | x < 1} and V = {(x, y) ∈ R2 \ {(−2, 0), (0, 2)} |
x > −1}. Then R2 \ {(−2, 0), (0, 2)} = U ∪ V , U ∩ V = (−1, 1) × R. It is easy to see
that U and V is each homeomorphic to R2 \ {pt}, and so it homotopy equivalent to S1. The
intersection U ∩ V is contractible, in particular simply connected. By the SVK theorem,
π1(S

2 \ {x1, x2, x3}) ∼= π1(S
1) ∗ π1(S1) = F2.
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(b) [2 pts] Let y ∈ T be any point. Prove that the spaces T \ {y} and S2 \ {x1, x2, x3} both
contain the wedge sum (i.e., one-point union) S1∨S1 as a deformation retract. Conclude that
they are homotopy equivalent.

Solution: T is obtained by attaching a single two-dimensional cell to S1 ∨S1. It follows that
T \ {y} deformation retracts onto S1 ∨ S1.

As to S2 \ {x1, x2, x3}, once again, this is homeomorphic to R2 minus two points. It is not
hard to show that this space deformation retracts onto S1 ∨ S1. Details are left to the reader.

(c) [1 pt] The Jordan curve theorem asserts that the complement of any closed non-self-intersecting
loop in R2 has two connected components. Assuming the Jordan curve theorem, prove that
the spaces T \ {y} and S2 \ {x1, x2, x3} are not homeomorphic.

Solution: The point is that there is an embedded circle S1 ⊂ T \ {y}, whose complement is
path-connected. Indeed, choose a circle of the form S1 × {∗} that does not pass through {y}.
Then

T \ (S1 × {∗}) = (S1 × S1) \ (S1 × {∗}) ∼= S1 × (0, 1),

which is clearly a connected surface. But then T \ {y} ∼= S1 × (0, 1) \ {y} is still connected,
because a connected surface remains connected after removing a point.

Now suppose that we have a homeomorphism f : T\{y}
∼=−→ S2\{x1, x2, x3}. Then f(S1×{x}) is

an embedded circle in S2\{x1, x2, x3}, and also in S1\{x1} ∼= R2. f induces a homeomorphism

(T \ {y}) \ S1 × {x} ∼= (S2 \ {x1, x2, x3}) \ f(S1 × {x}).

By the Jordan curve theorem, the complement the circle f(S1 × {∗}) in S1 \ {x1} is not
connected. But then it follows that the complement of this circle in S2 \ {x1, x2, x3} is also
not connected (why?). So f induces a homeomorphism between a connected space and a
non-connected space, which is impossible.


