Department of mathematics, Stockholm University
Examinator: Gregory Arone

Instructions: Textbooks, notes and calculators are not allowed. You may quote results that you learned during the class. When you do, state precisely the result that you are using. Unless explicitly instructed otherwise, be sure to justify your answers, and show clearly all steps of your solutions. In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. For each of the following statements, determine if it is (always) true or (sometimes) false. Justify your answers either by a brief and clear argument or by a counterexample.
(a) [2 pts] Suppose G is a group, with subgroups G_{1}, G_{2} and H. If $H \subset G_{1} \cup G_{2}$ then either $H \subset G_{1}$ or $H \subset G_{2}$.
(b) [2 pts] Let G_{1}, G_{2} be groups. For every subgroup $K \subset G_{1} \times G_{2}$, there exist subgroups $H_{1} \subset G_{1}$ and $H_{2} \subset G_{2}$ such that $K=H_{1} \times H_{2}$.
(c) [2 pts] Let R, S be commutative rings with unit. For every ideal I of $R \times S$, there exists ideals I_{1} of R and I_{2} of S such that $I=I_{1} \times I_{2}$.
2. Let S_{10} be the group of permutations of a set with 10 elements.
(a) [2 pts] Does S_{10} have a cyclic subgroup of order 30 ?
(b) [2 pts] How many elements are there in S_{10} that commute with $(12)(34)(567)$?
3. (a) $[3 \mathrm{pts}]$ Let G be a finite group, and H a proper subgroup of G. Prove that there exists an element $g \in G$ that is not conjugate to any element of H.
(b) [3 pts] Suppose that G is a finite group acting transitively on a set X^{1}. Prove that there exists an element $g \in G$ such that $g x \neq x$ for all $x \in X$.
(c) [2 pts] (optional bonus problem!) Show that Part (a) may not hold if G is an infinite group.
4. [4 pts] Prove that a group of order 56 has a normal p-Sylow subgroup for some prime p.
5. [5 pts] Let R be a commutative ring with a unit element $1 \neq 0$. Suppose that $R[x]$ is a principal ideal domain (I.e., an integral domain, where every ideal is principal). Prove that R is a field.
6. In this question, all coefficients are taken to be in $\mathbb{Z} / 5$. Let $a \in \mathbb{Z} / 5$. Consider the polynomial, depending on $a, p(x)=x^{2}+a x+1$. As usual, let (p) be the ideal of $\mathbb{Z} / 5[x]$ generated by $p(x)$.
(a) [2 pts] How many elements are there in the quotient ring $\mathbb{Z} / 5[x] /(p)$? If the answer depends on a, show explicitly how it depends. If it does not depend, explain why.
(b) [2 pts] For which values of a, is the polynomial $p(x)=x^{2}+a x+1$ irreducible?
(c) $[1 \mathrm{pt}]$ For which values of a, is the quotient ring $\mathbb{Z} / 5[x] /(p)$ a field?
[^0]
[^0]: ${ }^{1}$ Recall that an action is transitive if for every $x, y \in X$ there exists a $g \in G$ such that $y=g x$

