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Instructions: Textbooks, notes and calculators are not allowed. You may quote results that you learned
during the class. When you do, state precisely the result that you are using. Unless explicitly instructed
otherwise, be sure to justify your answers, and show clearly all steps of your solutions. In problems
with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not
solve the earlier parts

1. For each of the following statements, determine if it is (always) true or (sometimes) false. Justify
your answers either by a brief and clear argument or by a counterexample.

(a) [2 pts] Suppose G is a group, with subgroups G1, G2 and H. If H ⊂ G1 ∪ G2 then either
H ⊂ G1 or H ⊂ G2.

Solution: True. Suppose, by contradiction, that H ⊂ G1 ∪ G2, but H is not a subgroup of
either G1 or G2. Then H has elements h1 and h2 such that h1 is in G1 but is not in G2, while
h2 is in G2 but is not in G1. But then h1h2 can not be either in G1 or in G2 (why?), but
h1h2 ∈ H, so we obtain a contradiction to the assumption H ⊂ G1 ∪G2.

(b) [2 pts] Let G1, G2 be groups. For every subgroup K ⊂ G1×G2, there exist subgroups H1 ⊂ G1

and H2 ⊂ G2 such that K = H1 ×H2.

Solution: False. For example, the diagonal subgroup of G × G consisting of pairs (x, x),
where x is any element of G is not of this form, for any non-trivial group G. Indeed, for any
subgroup of G×G of the form H1 ×H2, if (x, y) ∈ H1 ×H2 then (x, e) ∈ H1 ×H2. But this
is not the case for the diagonal subgroup.

(c) [2 pts] Let R, S be commutative rings with unit. For every ideal I of R×S, there exists ideals
I1 of R and I2 of S such that I = I1 × I2.
Solution: True. Suppose I is an ideal of R × S. Then for every element (x, y) ∈ I, the
element (x, 0) = (x, y) · (1, 0) is an element of I, and similarly (0, y) ∈ I. Let I1 = {x ∈ R |
(x, y) ∈ I for some y ∈ S}. Similarly, let I2 = {y ∈ S | (x, y) ∈ I for some x ∈ R}. It is easy
to see that I1 is an ideal of R, I2 is an ideal of S, and I1 × I2 = I.

2. Let S10 be the group of permutations of a set with 10 elements.

(a) [2 pts] Does S10 have a cyclic subgroup of order 30?

Solution: Yes. The permutation (1, 2)(3, 4, 5)(6, 7, 8, 9, 10) has order 30, so it generates a
cyclic subgroup of order 30.

(b) [2 pts] How many elements are there in S10 that commute with (12)(34)(567) ?

Solution: The full cycle structure of this permutation, where we include the singleton cycles, is
(1, 2)(3, 4)(5, 6, 7)(8)(9)(10). It follows that the centralizer of this permutation has 2!·22 ·3·3! =
144 elements.

3. (a) [3 pts] Let G be a finite group, and H a proper subgroup of G. Prove that there exists an
element g ∈ G that is not conjugate to any element of H.

Soluiton: The set of elements of G that are conjugate to some element of H is the union of
conjugates of H. The number of distinct conjugates of H is [G : NG(H)], where NG(H) is the
normalizer of H. Each conjugate of H has as many elements as H, and the conjugates are
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not disjoint, since the identity element belongs to all the conjugates of H. It follows that the
union of conjugates of H has strictly fewer elements that [G : NG(H)] · |H|. Since H ⊂ NG(H),
it follows that [G : NG(H)] ≤ [G : H]. So the union of conjugates of H has strictly fewer
elements that [G : H] · |H| = |G|. It follows that there exists an element of G that is not
conjugate to any element of H.

(b) [3 pts] Suppose that G is a finite group acting transitively on a set X1. Prove that there exists
an element g ∈ G such that gx 6= x for all x ∈ X.

Solution: Let Gx ⊂ G denote the stabilizer of x in G. Let y ∈ X be another element.
Since the action of G is transitive, there exists an element g ∈ G such that y = gx. Then
Gy = gGxg

−1. It follows that for all y ∈ X, the stabilizer Gy is conjugate to Gx in G. By part
(a) there exists an element g ∈ G such that g /∈ Gy for all y ∈ X. It follows that gx 6= x for
all x ∈ X.

(c) [2 pts] (optional bonus problem!) Show that Part (a) may not hold if G is an infinite group.

Solution: Let S∞ = ∪∞n=1Sn be the infinite symmetric group. S∞ consists of bijections
f : N→ N, with the property that f(n) = n for n large enough. Let H ⊂ S∞ be the stabilizer
of 1. I claim that every element of S∞ is conjugate to some element of H. Indeed let f ∈ S∞.
Choose an n0 such that f(n) = n for all n ≥ n0. Let τ ∈ S∞ be the cycle (1, 2, . . . , n0). Then
τfτ−1(1) = τ(f(n0)) = τ(n0) = 1. So τfτ−1 ∈ H, and thus f ∈ τ−1Hτ .

4. [4 pts] Prove that a group of order 56 has a normal p-Sylow subgroup for some prime p.

Solution: By Sylow theorem, n7 can be either 1 or 8. If n7 = 1, the group has a normal seven-
Sylow subgroup. Suppose n7 = 8. Then the group has 6 · 8 = 48 elements of order 7. If n2 > 1,
then our group has at least 8+8−4 = 12 additional elements that are not of order 7. But then the
group has at least 60 elements, contradicting the assumptions. We conclude that if n7 > 1 then
n2 = 1, so there exists at least one normal p-Sylow subgroup.

5. [5 pts] Let R be a commutative ring with a unit element 1 6= 0. Suppose that R[x] is a principal
ideal domain (I.e., an integral domain, where every ideal is principal). Prove that R is a field.

Solution 1: Since R is a subring of R[x], and R[x] is an integral domain, it follows that R is an
integral domain. We know that there is an isomorphismR ∼= R[x]/(x). So it is enough to prove
that (x) is a maximal ideal of R[x]. Suppose that there exists an ideal (x) ⊂ J ⊂ R[x]. Since R[x]
is a PID, we can write J = (p(x)) for some polynomial p(x) ∈ R[x]. But then p(x)|x. It follows
that p(x) = a+ bx for some a, b ∈ R, and there exists some c, d ∈ R such that (a+ bx)(c+dx) = x.
It follows that ac = 0, bd = 0 and ad + bc = 1. It follows easily that either a = 0 and b is a unit,
in which case J = (x), or a is a unit and b = 0, in which case J = R. We have proved that (x) is
a maximal ideal.

Solution 2: Since R is a subring of R[x], and R[x] is an integral domain, it follows that R is an
integral domain. It is enough to prove that the only ideals of R are (0) and R. Let I be an ideal
of R. Let us suppose that I has a non-zero element α, and we will prove that I = R. Consider the
ideal I + (x) of R[x] consisting of polynomials a0 +a1x+ · · ·+anx

n, such that a0 ∈ I. Since R[x] is

1Recall that an action is transitive if for every x, y ∈ X there exists a g ∈ G such that y = gx
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a principal ideal domain, I + (x) is generated by some polynomial p(x). We claim that p(x) must
have degree zero. Indeed, the constant polynomial α is in I + (x), so p(x)|α, which is only possible
if p(x) is a constant polynomial. So I + (x) = (ω) for some ω ∈ I. But then ω|x, which is possible
only of ω is a unit. So I contains a unit, and thus I = R.

6. In this question, all coefficients are taken to be in Z/5. Let a ∈ Z/5. Consider the polynomial,
depending on a, p(x) = x2 + ax+ 1. As usual, let (p) be the ideal of Z/5[x] generated by p(x).

(a) [2 pts] How many elements are there in the quotient ring Z/5[x]/(p)? If the answer depends
on a, show explicitly how it depends. If it does not depend, explain why.

Solution: The quotient ring always has 25 elements.

(b) [2 pts] For which values of a, is the polynomial p(x) = x2 + ax+ 1 irreducible?

Solution: If p(x) is reducible then there exist s, t ∈ Z/5 such that

x2 + ax+ 1 = (x+ s)(x+ t).

It follows that st = 1 and s+ t = a. Equivalently s+ s−1 = a. In Z/5 one easily checks that

1 + 1−1 = 2, 2 + 2−1 = 2 + 3 = 0, 3 + 3−1 = 3 + 2 = 0, 4 + 4−1 = 4 + 4 = 3.

It follows that the polynomial is reducible if a = 0, 2, or 3, and thus it is irreducible if a = ±1.

(c) [1 pt] For which values of a, is the quotient ring Z/5[x]/(p) a field?

Solution: The quotient is a field if and only if p is irreducible, which is if and only if a = ±1.


