STOCKHOLMS UNIVERSITET

Matematiska institutionen Peter LeFanu Lumsdaine Exam / Tentamen MM7022 Logik II, 7,5 hp HT 2021 Wed, 2021-12-09

This exam consists of 6 questions, worth a total of 40 points. Not all questions are equally difficult. You may submit your answers in either English or Swedish. Write clearly and motivate your answers carefully.

Good luck! — Lycka till!

- 1 Calculate the cardinalities of the following sets, and order them according to cardinality (some may be equal):
 - $S_1 \coloneqq \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ increasing}\}$
 - $S_2 \coloneqq \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ decreasing}\}$
 - $S_3 \coloneqq \mathbb{N}^{\mathbb{R}}$
 - $S_4 \coloneqq \{f : \mathbb{R} \to \mathbb{N} \mid f \text{ increasing}\}$

(Here "increasing" means "non-strictly increasing", i.e. $f(x) \leq f(y)$ whenever $x \leq y$, and similarly "decreasing" means "non-strictly decreasing".)

- 2 Work in ZF. The order extension principle is the statement "for every partially ordered set (X, \leq) , there is some total order \leq' on X with $(\leq) \subseteq (\leq')$," or more concisely "every partial order can be extended to a total order".
 - (a) Show that AC implies the order extension principle. (You may use AC either directly, or via any of its consequences considered in the course.)
 - (b) Show that the order extension principle implies the restricted form of AC, "for every family of non-empty *finite* sets, there exists some choice function".
- 3 Cardinalities of models.
 - (a) Show that any consistent theory T in a language L has some model of size $\leq \max(||T||, ||L||)$.
 - (b) Give an example of a consistent theory T in a language L with no model of size $< \max(||T||, ||L||).$
 - (c) Must a consistent theory T in a language L have some model of size exactly $\max(||T||, ||L||)$? Prove or give a counterexample.
 - (d) Must a consistent theory T in a language L have some model of size $\leq ||T||$, assuming ||T|| is infinite? Prove or give a counterexample.

- 4 Show that the following functions are recursive:
 - (a) "truncated predecessor" $p: \mathbb{N} \to \mathbb{N}$, given by $p(0) \coloneqq 0, p(n) \coloneqq n-1$ for n > 0.
 - (b) "truncated subtraction", aka "monus" $\dot{-} : \mathbb{N}^2 \to \mathbb{N}, \ m \dot{-} n \coloneqq \max(m-n, 0).$

(Recall that the partial recursive functions are generated by projections, the constant 0, successor, composition, primitive recursive definitions, and the (unbounded) minimisation operator.)

- 5 ZFC is a theory in the countable language $\langle \in \rangle$. So by the Löwenheim–Skolem theorems, if ZFC is consistent, it has some countable model \mathcal{M} . But ZFC proves "there exists an uncountable set", so this statement holds in \mathcal{M} . Why doesn't this give a contradiction?
- 6 The goal of this problem is to show there are uncountably many countable nonstandard models of PA, up to isomorphism. Work over the language of arithmetic $L_A := \langle 0, 1, S, +, \times \rangle$. For $n \in \mathbb{N}$, write \bar{n} for the term $S^n(0)$ in L_A . In L_A , define " $x \ge y$ " as " $\exists z \, x = y + z$ " and " $x \mid y$ " as " $\exists z \, y = z \times x$ " A model of PA is standard if every element is the interpretation of some \bar{n} ; equivalently, if it is isomorphic to the model $\langle \mathbb{N}; 0, 1, S, +, \times \rangle$.
 - (a) Consider L_A plus an extra constant symbol c; let T be the theory consisting of PA, together with the axiom " $c \geq \overline{n}$ " for each $n \in \mathbb{N}$. Show that T is consistent; deduce that there exists some non-standard model of PA.
 - (b) Write $\mathbb{P} \subseteq \mathbb{N}$ for the set of prime numbers. Show that for every set of primes $X \subseteq \mathbb{P}$, there is some countable model \mathcal{M} of PA with an element $a \in \mathcal{M}$ whose standard prime divisors are precisely X; that is, such that for each $p \in \mathbb{P}$, $\mathcal{M} \models \bar{p} \mid a$ if and only if $p \in X$.
 - (c) Deduce that there are uncountably many isomorphism classes of countable models of PA. (*Hint: note that for each such model, only countably many sets of primes can appear as sets of standard prime divisors of some element.*)

— End of exam — Slut på provet —