STOCKHOLMS UNIVERSITET
Matematiska institutionen
Peter LeFanu Lumsdaine

Exam / Tentamen
MM7022 Logik II, 7,5 hp
HT 2021
Wed, 2021-12-09

This exam consists of 6 questions, worth a total of 40 points. Not all questions are equally difficult. You may submit your answers in either English or Swedish. Write clearly and motivate your answers carefully.

Good luck! - Lycka till!
1 Calculate the cardinalities of the following sets, and order them according to cardinality (some may be equal):

- $S_{1}:=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f$ increasing $\}$
- $S_{2}:=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f$ decreasing $\}$
- $S_{3}:=\mathbb{N}^{\mathbb{R}}$
- $S_{4}:=\{f: \mathbb{R} \rightarrow \mathbb{N} \mid f$ increasing $\}$
(Here"increasing" means"non-strictly increasing", i.e. $f(x) \leq f(y)$ whenever $x \leq$ y, and similarly "decreasing" means "non-strictly decreasing".)

2 Work in ZF. The order extension principle is the statement "for every partially ordered set (X, \leq), there is some total order \leq^{\prime} on X with $(\leq) \subseteq\left(\leq^{\prime}\right)$," or more concisely "every partial order can be extended to a total order".
(a) Show that AC implies the order extension principle. (You may use $A C$ either directly, or via any of its consequences considered in the course.)
(b) Show that the order extension principle implies the restricted form of AC, "for every family of non-empty finite sets, there exists some choice function".

3 Cardinalities of models.
(a) Show that any consistent theory T in a language L has some model of size $\leq \max (\|T\|,\|L\|)$.
(b) Give an example of a consistent theory T in a language L with no model of size $<\max (\|T\|,\|L\|)$.
(c) Must a consistent theory T in a language L have some model of size exactly $\max (\|T\|,\|L\|)$? Prove or give a counterexample.
(d) Must a consistent theory T in a language L have some model of size $\leq\|T\|$, assuming $\|T\|$ is infinite? Prove or give a counterexample.

4 Show that the following functions are recursive:
(a) "truncated predecessor" $p: \mathbb{N} \rightarrow \mathbb{N}$, given by $p(0):=0, p(n):=n-1$ for $n>0$.
(b) "truncated subtraction", aka "monus" $-: \mathbb{N}^{2} \rightarrow \mathbb{N}, m \doteq n:=\max (m-n, 0)$.
(Recall that the partial recursive functions are generated by projections, the constant 0, successor, composition, primitive recursive definitions, and the (unbounded) minimisation operator.)

5 ZFC is a theory in the countable language $\langle\in\rangle$. So by the Löwenheim-Skolem theorems, if ZFC is consistent, it has some countable model \mathcal{M}. But ZFC proves "there exists an uncountable set", so this statement holds in \mathcal{M}. Why doesn't this give a contradiction?

6 The goal of this problem is to show there are uncountably many countable nonstandard models of $P A$, up to isomorphism. Work over the language of arithmetic $L_{A}:=\langle 0,1, S,+, \times\rangle$. For $n \in \mathbb{N}$, write \bar{n} for the term $S^{n}(0)$ in L_{A}. In L_{A}, define " $x \geq y$ " as " $\exists z x=y+z$ " and " $x \mid y$ " as " $\exists z y=z \times x$ " A model of PA is standard if every element is the interpretation of some \bar{n}; equivalently, if it is isomorphic to the model $\langle\mathbb{N} ; 0,1, S,+, \times\rangle$.
(a) Consider L_{A} plus an extra constant symbol c; let T be the theory consisting of $P A$, together with the axiom " $c \geq \bar{n}$ " for each $n \in \mathbb{N}$. Show that T is consistent; deduce that there exists some non-standard model of PA.
(b) Write $\mathbb{P} \subseteq \mathbb{N}$ for the set of prime numbers. Show that for every set of primes $X \subseteq \mathbb{P}$, there is some countable model \mathcal{M} of PA with an element $a \in \mathcal{M}$ whose standard prime divisors are precisely X; that is, such that for each $p \in \mathbb{P}$, $\mathcal{M} \vDash \bar{p} \mid a$ if and only if $p \in X$.
(c) Deduce that there are uncountably many isomorphism classes of countable models of PA. (Hint: note that for each such model, only countably many sets of primes can appear as sets of standard prime divisors of some element.)
__ End of exam — Slut på provet

