MM 7022, Logic II, IT T 2021 Exam 2021-12-15

Solutions

1. Sumayy: $\left|s_{1}\right|=2^{S_{0}}, \quad\left|s_{2}\right|=x_{0}, \quad\left|s_{3}\right|=2^{\left(2^{0_{0}}\right)},\left|s_{4}\right|=2^{v_{0}}$,

$$
\text { so } \quad\left|s_{2}\right|<\left|s_{1}\right|=\left|s_{4}\right|<\left|s_{3}\right|
$$

Proofs:
(a) $\left|S_{1}\right|=2^{S_{1}}: \quad\left(S_{1}=\{\right.$ increasing fums $\left.f: N \rightarrow N\}\right)$
we know $\left|\mathbb{N}^{\mathbb{N}}\right|=2^{4}$.
since $\mathbb{N}^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}} \subseteq P(\mathbb{N} \times \mathbb{N}) \cong P(\mathbb{N}) \cong 2^{\mathbb{N}}$.
But we can give a bijection $N{\underset{\sim}{\sim}}_{\sim}^{\sim} S_{\sim}^{\alpha}$, as follows:
for arbitron $f \mathbb{N} \rightarrow \mathbb{N}$,
define an increasing function $\alpha(f): \mathbb{N} \rightarrow \mathbb{N}$
by ito sequence of sums, $\alpha(f)(n):=\sum_{0 \leq i \leq n} f(n)$
for increasing $g: N \rightarrow \mathbb{N}$,
define $\beta(g): N \longrightarrow N$ as its sequame of difference,

$$
\begin{aligned}
& A(g)(0)=g(0), \\
& B(g)(n)=g(u)-g(u-1) \quad \text { for } \quad u>0 .
\end{aligned}
$$

So $\left|s_{1}\right|=\left|\mathbb{N}^{N}\right|=\alpha^{M o}$.
(b) $\left|S_{2}\right|=S_{0}: \quad\left(S_{2}=\{\right.$ decerecoing functions $f(\mathbb{N} \rightarrow \mathbb{N}\})$
$S_{1} \leqslant\left|S_{2}\right|$ is clear, rime we can give an ejection
$N \rightarrow S_{2}$ by $c . g . \operatorname{sendang} n \in \mathbb{N}$ to the constant function with value u.

To show $\left|S_{2}\right| \leqslant S_{1}$, wite that we can encode any decreasing function f as a finite sea. Ot pairs of naturals, whose th clement is the th distinct value f takes, together with the minimal input an which f takes that value;
e.g. if f is the function

it would be cooled as $((0,3),(3,1),(4,9)$.
The fart f ir decreasing ensures this sequence ir fine, \& f can deadly be recovered from it;
So this cording gives an injection $S_{2} \rightarrow(N \times N 1)^{\sigma \omega_{n}} \mathbb{N}^{\text {sW}}$ and we know $\left|N^{\leqslant \omega}\right|=S_{0}^{\prime}$
(c)

$$
\begin{aligned}
& \left|S_{3}\right|=2^{\left(\alpha^{S_{0}^{\prime}}\right):} \quad\left(s_{3}=N^{\mathbb{R}}\right) \\
& 2^{\mathbb{R}} \subseteq N^{\mathbb{R}} \subseteq P(N \times \mathbb{R}) \cong P(\mathbb{R}) \cong Q^{\mathbb{R}} \\
& \text { so }\left|N^{\mathbb{R}}\right|=\left|Q^{\mathbb{R}}\right|=2^{\left(\alpha^{S_{0}}\right)}
\end{aligned}
$$

(d) $\quad\left|S_{4}\right|=2^{V_{0}}: \quad\left(S_{4}=\{\right.$ increasing $\left.f: \mathbb{R} \rightarrow \mathbb{N}\}\right)$ for $2^{S_{0}} \leq\left|S_{4}\right|$ wite we can give an injection $\mathbb{R} \rightarrow S_{4}$ by eg. sending $x \in \mathbb{R}$ to $f_{x}(y):=\left\{\begin{array}{ll}0 & y \leq x \\ 1 & y>x\end{array}\right.$.

Conversely for $\left|s_{4}\right| \leqslant 2^{\prime \prime}$,
first note that for an $f: R \rightarrow N$ increasing, the unease unage $f^{-1}(n)$ of any $n \in N$ mut be an interval, since if $x, y \in f^{-1}(x)$ and $x \leq z \leq y$,
then $n=f(x) \leqslant f(x) \leqslant f(y)=4$, so $z \in f^{-1}(n)$.
So any such f can be encoded ley giving the sequence of endpoints of those intervals, together with the values at there endpoints, allowing for the posibilitity that those intervals may. be infinite.
This may be wade precise
 as eg. a sequence $\mu_{f}: N \rightarrow(R \cup\{ \pm \infty\}) \times\{0,1\}$ as illustrated,

$$
\begin{aligned}
& \mu_{f}(u)_{1}=\inf \{x \mid f(x) \geq x\}, \\
& \mu_{f}(x)_{2}= \begin{cases}1 & \text { if } f\left(\mu_{f}(u)_{1}\right)=n, \\
0 \text { ot hermine }\end{cases}
\end{aligned}
$$

(where we tabs inf $(\mathbb{R})=-\infty, \operatorname{uif}(\phi)=\infty$).
This giver an injection

$$
\left.S_{4} \mapsto\left(\left(R_{1} \cup \pm \pm^{ \pm}\right)\right] \times\{0,1)\right)^{N} \cong R^{N} \cong\left(R^{N}\right)^{N} \cong 2^{N \times N} \cong 2^{N}
$$ and so shows $\left|S_{4}\right| \leqslant 2 \%_{0}$.

2 (a) We will shaw that Zanis lemna luhich is equisdent to $A C$, over $Z P$) umplies the order ectension priueiple.
Let (x, \leqslant) be a parial ader. Take P to be the poret of partial ordenings on X extenduy \leqslant, ardered by inclusion.
We clain:
(i) P is chain-complete;
(ii) any maxinal element of P is a total ader.

Toyether, these willgive a botal ordeing extending \leqslant, as desired: by (i) and Zouic lemua, P has some maxinal element; by (ii), it mest be total.
Proot of claim (i): If $C \subseteq P$ is a chain, then $\leqslant_{c}:=U C$ is a prastial oder extending \leqslant (castainly contains \leq, hence is reflexive; is trousitive, since if $x \leqslant_{c} y \leqslant_{c} z$,
that means $x \leqslant_{1} y \leqslant_{2} z$ for some $\leqslant_{1}, \leqslant_{2}$ in C; wRO $\left(s_{1}\right) \leq\left(s_{2}\right)$ since Cis a chaim; so $x \leqslant_{2} y \leqslant_{2} z$, so $x \leqslant_{2} z$ and so $x \leqslant c z$;
and antisymelty is slider to trausickily);
so \leqslant_{c} gives a (lecot!) upper bound for C in P.
Proof of claim (ii): Suppose $\leqslant 1 \in P$ is not total; we will show it is not maximal in P. Since \leqslant^{\prime} is not total, there are some, $\in X$ st. $a \neq 16, b$ fla. Defiuve \leqslant " to be

$$
\leqslant^{\prime} \cup\{(x, y) \mid x \leqslant a, \quad b \leqslant y\}
$$

Clearly $\leqslant \prime$ contains $\leqslant, \&$ is reflexive,
Tromsitivily: if $x \leqslant 1 y \leqslant \leqslant^{\prime \prime z}$, there are for er parisilities:

$$
\begin{aligned}
& x \leqslant^{\prime} y \leqslant^{\prime} z \\
& x \leqslant^{\prime} a b \leqslant^{\prime} y \leqslant^{\prime} z \\
& x \quad \leqslant^{\prime} y \leqslant^{\prime} a b \leqslant^{\prime} z \\
& x \leqslant^{\prime} a \quad s^{\prime} y \leqslant^{\prime} a \quad b s^{\prime} z
\end{aligned}
$$

The finn three cash imply $x \leqslant^{\prime \prime} z$. The forwith canst recur, since it would imply $b \leqslant a$; but we chose a, b such that $b \not \approx a$.
Finally, antisyunety. If $x s^{\prime \prime} y$ and $y s^{\prime \prime} n$,
then again we have four prosibitities as above:

$$
\begin{aligned}
& x \leqslant^{\prime} y \leqslant^{\prime} x \\
& x \leqslant^{\prime} a b \leqslant^{\prime} y \leqslant^{\prime} x \\
& x \quad s^{\prime} y \leqslant^{\prime} a b \leqslant^{\prime} x \\
& x \leqslant^{\prime} a b s^{\prime} y \leqslant^{\prime} a b s^{\prime} x
\end{aligned}
$$

Now, all of the last 3 imply $b \leqslant a$, so cannot occur. So only the first care is possible, wide implies $x=y$.

So $\leq "$ is a partial order extending s, and indeed strictly extending ≤ 1,
(since $a \leqslant{ }^{\prime \prime} b$ bunt $a \neq b$) so $s^{\prime \prime}$ shows that \leqslant ' is not mox'unal in P, so we're done.
(b) The order-exterfion principle implies that every set admit some total ordering (sense it cannes the "discrete" partial order $=$, which can then be extended to some total order.

So given a family of non-enpty finite sets $\left\langle x_{i}\right\rangle_{i \in I \text {, }}$ we may tabs some total adder s on the union $\bigcup_{i \in I} x_{i}$. Now sine any finite $n-l$. subset of a total order has a unique wivielal clement, we get the function

$$
i \longmapsto \min \left(x_{i}\right)
$$

giving a choice function for the original family.

3 (a) Given consistent P over L as in the question, we know by completares T has some model M. If M is finite, then $\|M\|<\lambda_{0} \leqslant\|L\|$ so were dove Otherwise, M ir infinite, so by downward LLS, has sone elementary sefetricture $N<M$ with $\|N\| \leqslant\|L\|$. So N is a model of τ of size s max (ITII IILU) as required.
(b) Take T to be the they of a vocal odder with no maximal element. Then T is frise $\& ~\|L\|=T_{0}$; \& T has no finite model, so every model is of size

$$
\geqslant q_{0}=\max (\|\pi\|\|L\|) .
$$

(c) Take L to be the empty language, T Qua hang $\left\{v_{x, y}, x=y\right\}$. Than max $(\|T\|, I L U)=\|L\|=S_{0}$, lent coney world of T is of size ≤ 1.
(d) Yes: any cuncident, infinite T has some uriel of size $\leq T$. Proof: Given such T, let $L^{\prime} \subseteq L$ be the sublanguage sprecitied by just the symbols appearing inT.

The set of such syubres is ot size $\leqslant T$ (rime each formula in T contain only fin. many syubtots, \& T is infinite), so $\left\|L^{\prime}\right\| \leqslant\|T\|$. Now let T^{\prime} be T rewed as a theory over L^{\prime}. By (a), T^{\prime} has some model M of size $\leqslant \max \left(\left\|T T^{\prime}\right\|\left\|L^{\prime}\right\|\right)=\|T\|$. But now we can expand M to an 1 -structure N by picking some abititray interpretation for the symbols of L that are not in L^{\prime}; then N is a model of T of size $\leqslant(T)$, as decried.
4. (a) Predecessor satisfies

$$
\begin{aligned}
& p(0)=0 \\
& p(s(u)=n
\end{aligned}
$$

So it is the function specified lay the simple recursive defin

$$
\begin{gathered}
p(0)=g() \\
p(s(u))=h(n, p(u))
\end{gathered}
$$

where gi $\mathbb{N}^{\circ} \rightarrow \mathbb{N}$ is the constant O
\& $\quad U: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is The projection $h(x, y)=x$.
So it is a (primitic) recursive function.
(b) Similarly, "momus" satisfies $\quad m-0=m$

$$
m \div S_{n}=p(m-n)
$$

so is the function $f: N^{2} \rightarrow N$ specified by the (parannetised) recursive def $f(m, 0)=g^{\prime}(m)$

$$
f\left(m, s_{u}\right)=u^{\prime}(m, u, f(m, u))
$$

where $g^{\prime}(x)=x \quad U(x, y, z)=p(z)$. Now g^{\prime} is a projection function, $\& W^{\prime}$ is the composite of p with the $3^{r d} p$ erection $N^{3} \rightarrow \mathbb{N}$. So $g^{\prime} \& k^{\prime}$ are recursive; so mons is recursive.
S. As described in the question, if ZFC is consistent, then it has some countable model; call this $\left(M, \varepsilon^{\mu}\right)$. (Note that the relation ε^{4} need not he actual set membership - it is just some binary relation on M.)
Since $M F Z F C$, we know that $M F$ "there exist some uncomitatle set":
that is, the is some $a \in M$ such that

$$
M \neq " a \text { is uncountable". }
$$

However, this doer not mean that $\left\{x \in M \mid x \varepsilon^{\mu} a\right\}$ is uncountable! It means that $M \vDash$ "the is no sujecection $\omega \rightarrow a^{\prime \prime}$, ie. thane is no $f \in M$ such that, $M \vDash$ "f ir a sujection $\omega \rightarrow a$ ".
Even if ε^{M} is $\epsilon,\left[\omega \rrbracket^{M}=\omega\right.$, and all clits of a are in M, just means that M does not contain any surjection $\omega \longrightarrow a$. So a may be countable_sudi surjection may exist they just cannot lie in M.
6. (a) To show T is consistent, it suffices (by the compaction thun) to shew that every finite subset $T^{\prime} \subseteq T$ is consistent.

But given such T^{\prime}, tale

$$
N=\max \left\{u \in \mathbb{N} \mid " c \geqslant n^{\prime \prime} \subset T^{\prime}\right\}
$$

and stere that taking qu standard unoded \mathbb{N} of $P A$, with c interpreted as N, gives a moll of T !

So every such T^{\prime} is consistent; so T is consistent, \& has some model M. But uni M (or to be pedantic, its reduce to L_{A}) is a won-stardend model of $P A$, sine for each $u \in \mathbb{N}$,
$T \vdash c \neq \bar{n} \quad$ (since $T \vdash c \geqslant \widehat{n+1}$,

$$
\text { \& } p A+\forall x, y, x \geqslant S(y) \rightarrow x \neq y)
$$

so $\left[c \rrbracket^{M} \neq[\bar{n}]^{M}\right.$.
(b) Again, we use compactness.

Given $x \subseteq \mathbb{P}$, let T_{x} be the theory (again in 4 a plus one ven constraint syubtol C)

$$
\mathbb{P A} \cup\{\bar{p}|c| p \in x\} \cup\{\bar{p} \nmid c|p \in \mathbb{P}| X\} .
$$

Any finite $T^{\prime} \subseteq T_{x}$ is contained in

$$
P A \cup\left\{\bar{p}|c| p \in X^{\prime}\right\} \cup\left\{\bar{p}+c \mid p \in X^{\prime \prime}\right\}
$$

for some forte, dirgont sch it primes $x^{\prime}, x^{\prime \prime}$, and so is modelled by N, with c interpreted as $T_{p \in X^{\prime}} P$. So by compactors, T has some model; the def in T Censures that in any such wo del, the standard, diviners of $[C]$ are precisely X.

Finally, by downward Lowealleim.
Shorten, since $\left|L_{A}\right|=s_{0}$, there must exist some countable such model.
(c) For any motel M of $P A$, wite $A_{m}:=\{x \leq \mathbb{P} \mid$ the is some ac M whore stonkered, studios? are precisely X
at
If $M \simeq M^{\prime}$, then $A_{M}=A_{\mu^{\prime}}$, so me can speak of $A_{\underline{M}}$ for any iso class of models \underline{M}. Movererer, if M is a countable model, \bar{A}_{M} is certainly countable.
Part (6) tells os that
so if there were only countably many iso classed of cuttle models of PA, P(R) would be a cole union of coble rets, and hence would be countable, But $|\mathbb{P}|=M_{0}$, so $P(\mathbb{P})$ is uncoutthle. So thane unit be uncomitably many iso classes of countable models of PA.

