MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sofia Tirabassi

Tentamensomskrivning i Combinatorics
7.5 hp

11th January 2022

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.

1. Partitions: (2 points)

Consider r a positive integer and let a_{r} be the number of (unordered) partitions of r such that:

- no summand is larger than 4;
- 3 appears at least 3 times;
- 4 appears at most 2 times.

Express of the generating function of $a_{r}, r \in \mathbb{N}_{>0}$, as a quotient of polynomials. Solution: We know from the lectures and textbook that the generating function for $p(r)$ the number of unordered partitions of r is

$$
\prod_{n \in \mathbb{N}>0} \frac{1}{1-x^{n}}
$$

If we assume that the highest summand is 4 the generating functions becomes

$$
\prod_{n=1}^{4} \frac{1}{1-x^{n}}
$$

The conditions that there could be at most 2 fours change the generating function in the following

$$
\prod_{n=1}^{3} \frac{1}{1-x^{n}} \cdot\left(1+x^{4}+x^{8}\right)
$$

We just have to see the effect of the condition on the numbers of 3 . So we have that

$$
\begin{aligned}
f(x) & =\left(\frac{1}{1-x}\right) \cdot\left(\frac{1}{1-x^{2}}\right) \cdot\left(\sum_{n=3}^{\infty} x^{3 n}\right) \cdot\left(1+x^{4}+x^{8}\right) \\
& =\left(\frac{1}{1-x}\right) \cdot\left(\frac{1}{1-x^{2}}\right) \cdot\left[x^{9} \cdot\left(\sum_{n=1}^{\infty} x^{3 n}\right)\right] \cdot\left(1+x^{4}+x^{8}\right) \\
& =\left(\frac{1}{1-x}\right) \cdot\left(\frac{1}{1-x^{2}}\right) \cdot\left(\frac{x^{9}}{1-x^{3}}\right) \cdot\left(1+x^{4}+x^{8}\right) \\
& =\left(\frac{1}{1-x}\right) \cdot\left(\frac{1}{1-x^{2}}\right) \cdot\left(\frac{1}{1-x^{3}}\right) \cdot\left(x^{9}+x^{13}+x^{17}\right)
\end{aligned}
$$

2. Rook polynomials:

(a) (2 point) Define the rook numbers and the rook polynomial of a chessboard C.
(b) (3 points) Calculate the rook polynomial of the following 4×4 chessboard.

(c) (2 point) State formally how the rook polynomial of the union of two disjoint chessboards C_{1} and C_{2} can be written in terms of the rook polynomials of the C_{i} 's
(d) (2 points) Prove your statement in point (d).

Soulution: For (a), (b), and (c) we refer to the textbook.
(d) Using the forumla $r(C, x)=x r\left(C_{e}, x\right)+r\left(C_{s}, x\right)$ one arrives at the result

$$
r(C, x)=1+8 x+20 x^{2}+16 x^{3}+4 x^{4}
$$

3. Recursion:

Consider the following recursion relation

$$
a_{n+2}-6 a_{n+1}+9 a_{n}=5
$$

With boundary conditions $a_{0}=0$ and $a_{1}=1$.
(a) (3 points) Solve the relation finding a closed formula for a_{n}.
(b) (2 points) Express the generating function of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ as a quotient of polynomials.

Solution: (a) The characteristic equation of the recursion relation is $x^{2}-6 x+9=0$ which has a double real root $x=3$. Therefore the general solution of the homogeneous relation is

$$
a_{n}^{(h)}=(A+B n) 3^{n},
$$

with A and B real numbers. We observe that the right hand side is of the form $5(1)^{n}$. Has 1 is not a root of the characteristic equation, a particular solution of the recursion relation will be

$$
\begin{equation*}
a_{n}^{(p)}=\alpha \tag{1}
\end{equation*}
$$

for some constant α. We plug this in the recursion relation to determine α. We get

$$
\alpha-6 \alpha+9 \alpha=5
$$

from which we deduce that $\alpha=\frac{5}{4}$. So the general solution of the recursion relation is

$$
a_{n}=(A+B n) 3^{n}+\frac{5}{4}
$$

Now we have to determine the values of A and B using the boundary conditions. We get that

$$
0=a_{0}=A+\frac{5}{4}
$$

thus we have that $A=-\frac{5}{4}$. From the second condition we have that

$$
1=a_{1}=(A+B) 3+\frac{5}{4}=-\frac{5}{2}+3 B
$$

We deduce that $B=-\frac{7}{6}$. Thus the solution of the recursion relation with boundary condition is

$$
a_{n}=\left(-\frac{5}{4}+\frac{7}{6} n\right) 3^{n}+\frac{5}{4} .
$$

(b) We have that

$$
\sum_{n=0}^{\infty} a_{n+2} x^{n+2}-6 \sum_{n=0}^{\infty} a_{n+1} x^{n+2}+9 \sum_{n=0}^{\infty} a_{n} x^{n+2}=5 \sum_{n=0}^{\infty} x^{n+2}
$$

We can rewrite this has

$$
f(x)-a_{0}-a_{1} x-6 x\left(f(x)-a_{0}\right)+9 x^{2} f(x)=5 \frac{x^{2}}{1-x}
$$

where f is the generating function of the a_{n} 's. Now we use the boundary conditions an s we get the following equation

$$
f(x)-x-6 x f(x)+9 x^{2} f(x)=5 \frac{x^{2}}{1-x}
$$

which we solve for $f(x)$ and get

$$
f(x)=\frac{4 x^{2}+x}{(1-x)\left(1-6 x+9 x^{2}\right)} .
$$

4. Graphs:

Consider the (simple and loop-free) complete bipartite graph $K_{n, m}$.
(a) (2 points) Give conditions on n and m such that $K_{n, m}$ is connected.
(b) (2 points) Give conditions on n and m such that $K_{n, m}$ has an Euler circuit.
(c) (2 points) Give conditions on n and m such that $K_{n, m}$ has an Hamilton path.
(d) (2 points) Compute the chromatic polynomial of $K_{2,2}$. (Formula: you can use that $p\left(K_{n}, x\right)=$ $x(x-1)(x-2) \cdots(x-n+1))$

Solution: (a) If n and m are both positive, the graph is connected. In fact let consider $V\left(K_{n, m}\right)=$ $V_{1} \cup V_{2}$, and take a and b in V. If they belong to different V_{i} 's then the edge $\{a, b\}$ is in $E\left(K_{n, m}\right)$. Suppose otherwise that both a and b are in V_{1} then there is a vertex $c \in V_{2}$ (m is positive) which is adjacent to both a and b (by the completeness of $K_{n, m}$. Thus (a, c, b) is a path connecting a and b. A similar argument, with the assumption that n is positive let us construct a path from a to b when a and b are in V_{i}.
(b) To have an Euler circuit the degree of every vertex has to be even. Let $a \in V\left(K_{n, m}\right)=V_{1} \cup V_{2}$. Then $\operatorname{deg}(a)=m$ if $a \in V_{1}$ or n otherwise. Therefore $K_{n, m}$ has an Euler circuit if, and only if, both n and m are even.
(c) If the degree of two non adjacent vertices is bigger or equal $n+m \geq 3$ we have an Hamilton path. Two vertices a and b in $V\left(K_{n, m}\right)=V_{1} \cup V_{2}$ are not adjacent if, and only if, they belong to the same V_{i}. In this case their degree is the size of the other V_{i}. Thus we have that $2 m \geq m+n$ and $2 n \geq n+m$ are two conditions that ensure the existence of an Hamilton path. We deduce that an Hamilton path exists when $n=m \geq 2$.
Alternatively, we have an Hamilton path if $n+m \geq 3$ and the sum of the degrees of any two vertices is at least $n m-1$. We get this 3 conditions
(a) $n+m \geq n+m-1$, which is always satisfied
(b) $2 n \geq n+m-1$, which is equivalent to $n \geq m-1$;
(c) $2 m \geq n+m-1$ which is equivalent to $m \geq n-1$.

Thus if we take $n=m-1$, or $m=n-1$, all the conditions are satisfied and there is an Hamilton path. (d) This is an example in the book.

5. Latin squares:

Let q be a prime different from 2 or 3 . Define the $q \times q$ matrix $A=\left(a_{i j}\right)$ by $a_{i j} \equiv 2 i+j(\bmod q)$
(a) (2 points) Write A when $q=5$. Observe that it is a Latin square.
(b) (2 points) For $q=5$ find a Latin square which is orthogonal to A. (Hint: 3 is a unit in \mathbb{F}_{5})
(c) (2 points) Show that for every q, the matrix A is a Latin square. (Hint: You need to show that $a_{i j}=a_{i k}$ implies $j=k$ and that $a_{i j}=a_{l j}$ implies $i=l$.)

Solution: (a)

0	1	2	3	4
2	3	4	0	1
4	0	1	2	3
1	2	3	4	0
3	4	0	1	2

(b) We know that $a_{i, j} \equiv 3 i+j(\bmod q)$ will produce a Latin square ortogonal to the one given above:

0	1	2	3	4
3	4	0	1	2
1	2	3	4	0
4	0	1	2	3
2	3	4	0	1

(c) Suppose that $a_{i j}=a_{i k}$. Then we have that

$$
2 i+j \equiv 2 i+k(\quad \bmod q)
$$

The rules of the operation in \mathbb{F}_{q} guarantee that $j=k$. Suppose now that $a_{i j}=a_{l j}$ for some j then we have

$$
2 i+j \equiv 2 l+j(\quad \bmod q)
$$

which is equivalent to $2 i \equiv 2 j(\bmod q)$. Since 2 is a unit in \mathbb{F}_{q} we deduce that $i \equiv j(\bmod q)$.

