MATEMATISKA INSTITUTIONEN
 STOCKHOLM UNIVERSITET

Tentamensskrivning i

Avd. Matematik
Examinator: Yishao Zhou

Numerisk analys
Teoriprov
Den 3 december 2021

Argue carefully. You are allowed to use intermediate results in the preceding problem(s) which you were not able to solve.
There are 6 problems and 16 points (p) each except the last problem with 20p.
Grades: $A: p \geq 90 ; B: 80 \leq p \leq 89 ; C: 70 \leq p \leq 79 ; D: 60 \leq p \leq 69 ; E: 50 \leq p \leq 59$;
(1) Consider the problem of solving the equation $A x=b$ with

$$
A=\left(\begin{array}{cccc}
2 & 10 & 0 & -1 \\
0 & -1 & 1 & 5 \\
5 & 1 & 0 & 0 \\
-1 & 0 & 10 & 0
\end{array}\right), \quad b=\left(\begin{array}{c}
30 \\
25 \\
10 \\
70
\end{array}\right)
$$

Show that the system of equations can be converted to an equivalent system with the coefficient matrix being strictly diagonally dominant. Provide a convergent iterative method. Argue why it converges.
(2) A numerical derivation gives

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\left(\frac{h^{2}}{3!} f^{(3)}(x)+\frac{h^{4}}{5!} f^{(5)}(x)+\cdots\right), h>0 .
$$

Richardson's extrapolation gives

$$
f^{\prime}(x)=\frac{A f(x+2 h)+B f(x+h)+C f(x-h)+D f(x-2 h)}{12 h}+O\left(h^{\alpha}\right) .
$$

Determine the coefficients A, B, C, D and the exponent α.
(3) Let $e^{\top}=(\underbrace{1,1, \ldots, 1}_{n})$ and $b^{\top}=(1,0, \ldots, 0)$ be vectors with n and m components respectively and $m>n$. Let the $m \times n$ matrix A have n columns $(1, \delta, 0, \ldots 0)^{\top},(1,0, \delta,, \ldots 0)^{\top}, \ldots$ $(1,0, \ldots, 0, \ldots \delta)^{\top}$ each with m components. Assume δ is very small, say 10^{-16}.
(a) Show that $A^{\top} A=\delta^{2} I_{n}+e e^{\top}$ and hence it is positive semidefinite.
(b) Show that the maximum eigenvalue of $A^{\top} A$ is $\delta^{2}+n$ and the smallest eigenvalue of $A \top A$ is δ^{2}. Compute further the condition number $\kappa_{2}\left(A^{\top} A\right)$.
(c) Argue the why the normal equation approach is not recommended for solving least squares problem (the over-determined system $A x=b$). Suggest an alternative way to solve it.
(Partial points will be given for solution with small m and n.)
(4) Show that the error to compute the integral $I=\int_{0}^{2} \frac{d x}{1+x^{2}}$ by trapezoidal rule T_{n} is

$$
-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(\xi_{n}\right) . \quad \text { for some } \xi_{n} \text { in the interval }[0,2]
$$

How large should n be so that

$$
\left|I-T_{n}\right| \leq 5 \cdot 10^{-6} ?
$$

(5) Consider the initial value problem $y^{\prime}(x)=-y, y(0)=1$.
(a) Determine an explicit expression for y_{n} obtained by Euler's metod with step length h.
(b) For which values of h is the sequence $y_{0}, y_{1}, y_{2}, \ldots$, bounded?
(c) Compute $\lim _{h \rightarrow 0} \frac{y(x, y)-e^{-x}}{h}$.

You have finished the exam if your homework point $p_{h} \geq 15$ (i.e. $\mathbf{p}=20$). There are four parts in next problem. Do one part if $p_{h} \in[10,15)$ (i.e. $\mathbf{p}=10$); do two parts if $p_{h} \in[5,10)$ (i.e. $\mathbf{p}=5$). Note that all your p_{h} will be added.
(6) (a) Determine the coefficients A_{0}, A_{0} and the points x_{0} and x_{1} in the formula

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

such that this is exact for polynomial of degree ≤ 3.
(b) What is the relation between the points x_{0} and x_{1} and the polynomial $p_{2}(x)=\frac{1}{2}\left(3 x^{2}-\right.$ $1)$? Show that $1, x, p_{2}$ form an orthogonal basis in the vector space $P_{2}(-1,1)$, the set of real polynomials of degree ≤ 2 equipped with the inner product $\langle f(x), g(x)\rangle=$ $\int_{-1}^{1} f(x) g(x) d x$.
(c) Show that the formula derived in (a) is the same as that derived by Lagrange interpolating polynomial to approximate f using the zeros of $p_{2}(x)$ as interpolating points.
(d) Use your formula to approximate $\int_{1}^{3 / 2} x^{2} \ln x d x$. (Leave the \ln and square root as they are.)

To get the graded paper fill in the formula at
https://survey.su.se/Survey/42570/en or https://survey.su.se/Survey/42570/sv .

