Solutions for Examination Categorical Data Analysis, January 12, 2022

Problem 1

a. Since a pre-determined number $(=9)$ of persons were given the medicine, the row sums $n_{1+}=n_{2+}=9$ are fixed. Therefore the most appropriate sampling scheme is independent binomial rows. We regard $\left(n_{11}, n_{21}\right)$ as data, since they determine uniquely the number of observations in the other two cells. The success probabilities are π_{1} and π_{2} for the first and second rows respectively, so the likelihood is

$$
\begin{aligned}
l\left(\pi_{1}, \pi_{2}\right) & =P\left(N_{11}=n_{11}, N_{21}=n_{21} \mid \pi_{1}, \pi_{2}\right) \\
& =\binom{n_{1+}}{n_{11}} \pi_{1}^{n_{11}}\left(1-\pi_{1}\right)^{n_{1+}-n_{11}} \cdot\binom{n_{2+}+}{n_{21}} \pi_{2}^{n_{21}}\left(1-\pi_{2}\right)^{n_{2+}-n_{21}} \\
& =\binom{9}{6}_{1}^{6}\left(1-\pi_{1}\right)^{3} \cdot\binom{9}{3} \pi_{2}^{3}\left(1-\pi_{2}\right)^{6} \\
& =7056 \pi_{1}^{6}\left(1-\pi_{1}\right)^{3} \pi_{2}^{3}\left(1-\pi_{2}\right)^{6} .
\end{aligned}
$$

b. The null hypothesis is $H_{0}: \pi_{1}=\pi_{2}$.
c. Fisher's exact test conditions on fixed row and column sums, with a hypergeometric distribution

$$
P_{H_{0}}\left(N_{11}=n_{11} \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right)=\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}=\frac{\binom{9}{n_{11}}\binom{9}{9-n_{11}}}{\binom{18}{9}} .
$$

d. The odds ratio is

$$
\begin{equation*}
\theta=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}=\frac{\pi_{1}\left(1-\pi_{2}\right)}{\pi_{2}\left(1-\pi_{1}\right)} . \tag{1}
\end{equation*}
$$

With estimates $\hat{\pi}_{i}=n_{i 1} / n_{i+}$ plugged into (1), for $i=1,2$, we find that

$$
\hat{\theta}=\frac{\hat{\pi}_{1}\left(1-\hat{\pi}_{2}\right)}{\hat{\pi}_{2}\left(1-\hat{\pi}_{1}\right)}=\frac{n_{11} n_{22}}{n_{12} n_{21}}=\frac{6 \cdot 6}{3 \cdot 3}=4 .
$$

e. A one-sided alternative

$$
H_{a}: \pi_{1}>\pi_{2} \Longleftrightarrow H_{a}: \theta>1,
$$

corresponds to a positive effect of the medicine. Using the probabilities in the table, we find a

$$
\begin{aligned}
P-\text { value } & =P_{H_{0}}\left(N_{11} \geq 6 \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right) \\
& =0.1451+0.0267+0.0017+0.0000 \\
& =0.1735,
\end{aligned}
$$

and conclude that H_{0} cannot be rejected at level 5%.

Problem 2

a. The expected cell counts $\mu_{i j}=n \pi_{i j}$ are fitted as

$$
\hat{\mu}_{i j}=\frac{n_{i+} n_{+j}}{n}
$$

under H_{0}, as summarized in the following table (see also Table 2 of Appendix B of the problem sheet):

	j		
i	1	2	3
1	4.80	11.20	4.00
2	11.76	27.44	9.80
3	7.44	17.36	6.20

This gives a chisquare statistic

$$
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}=5.062,
$$

which has a χ_{df}^{2}-distribution under H_{0}, with df $=(3-1)(3-1)=4$. Since $\chi_{4}^{2}(0.05)=$ 9.488 exceeds X^{2}, H_{0} is not rejected at level 0.05 (P-value 0.281).
b. Since the marginal probabilities π_{i+} and π_{+j} are known under H_{0}, so are the cell probabilities $\pi_{i j}=\pi_{i+} \pi_{+j}$ and expected cell counts $\mu_{i j}=n \pi_{i+} \pi_{+j}$. We have that $\mu_{i j}=25$ if $i=j=2, \mu_{i j}=12.5$ if just one of i and j equals 2 and $\mu_{i j}=6.25$ if neither i nor j equals 2 . The redefined chisquare statistic is

$$
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\mu_{i j}\right)^{2}}{\mu_{i j}}=9.88 .
$$

It has a χ_{df}^{2}-distribution under H_{0}, with $\mathrm{df}=3 \times 3-1=8$. Since $\chi_{8}^{2}(0.05)=15.51$ exceeds X^{2}, H_{0} is not rejected at level 0.05 (P-value 0.274).
c. Merging rows 1 and 2, and also columns 1 and 2 , we get a reduced 2×2 contingency table

	j	
i	1	2
1	52	17
2	28	3

of cell counts $\tilde{n}_{i j}$. Its odds ratio is estimated as

$$
\hat{\theta}=\frac{\tilde{n}_{11} \tilde{n}_{22}}{\tilde{n}_{12} \tilde{n}_{21}}=\frac{52 \cdot 3}{17 \cdot 28}=0.328
$$

d. The \log odds is estimated as $\log (\hat{\theta})=-1.1156$, with a standard error

$$
\mathrm{SE}=\sqrt{\frac{1}{\tilde{n}_{11}}+\frac{1}{\tilde{n}_{12}}+\frac{1}{\tilde{n}_{21}}+\frac{1}{\tilde{n}_{22}}}=\sqrt{\frac{1}{52}+\frac{1}{17}+\frac{1}{28}+\frac{1}{3}}=0.6687 .
$$

This gives a 95% confidence interval

$$
(-1.1156 \pm 1.96 \cdot 0.6687)=(-2.426,0.195)
$$

for $\log (\theta)$, and

$$
\left(e^{-2.426}, e^{0.195}\right)=(0.0884,1.2153)
$$

for θ. The interval is wide because of the small number of observations in cell (2,2), and H_{0} (that rows and columns of the 2×2 table are independent, i.e. $\theta=1$) cannot be rejected. For the same reason, the interval is also quite inaccurate, since it relies on $\log (\hat{\theta})$ having a distribution close to normal, which is an asymptotic result for large cell counts.

Problem 3

a. Model $M_{1}=($ EGS $)$ has Poisson distributed cell counts

$$
N_{e g s} \sim \operatorname{Po}\left(\exp \left(\lambda+\lambda_{e}^{E}+\lambda_{g}^{G}+\lambda_{s}^{S}+\lambda_{e g}^{E G}+\lambda_{e s}^{E S}+\lambda_{g s}^{G S}+\lambda_{e g s}^{E G S}\right)\right),
$$

with $e \in\{1,2,3\}$ and $g, s \in\{1,2\}$. If the highest level of each variable is used as baseline, any parameter with at least one of its indeces e, g or s equal to the highest level is put to zero. This gives 12 parameters, included in the vector

$$
\begin{equation*}
\left(\lambda, \lambda_{1}^{E}, \lambda_{2}^{E}, \lambda_{1}^{S}, \lambda_{1}^{G}, \lambda_{11}^{E G}, \lambda_{21}^{E G}, \lambda_{11}^{E S}, \lambda_{21}^{E S}, \lambda_{11}^{G S}, \lambda_{111}^{E G S}, \lambda_{211}^{E G S}\right) \tag{2}
\end{equation*}
$$

b. Model M_{0} is obtained from (2) by removing all interaction parameters that involve S. The remaining 7 parameters are included in the vector

$$
\begin{equation*}
\left(\lambda, \lambda_{1}^{E}, \lambda_{2}^{E}, \lambda_{1}^{S}, \lambda_{1}^{G}, \lambda_{11}^{E G}, \lambda_{21}^{E G}\right) \tag{3}
\end{equation*}
$$

c. Since E and G are jointly independent of S under M_{0}, it follows that the expected cell counts are

$$
\begin{equation*}
\mu_{e g s}=\mu_{+++} \pi_{e g s}=\mu_{+++} \pi_{e g+} \pi_{++s}=\mu_{+++} \frac{\mu_{e g+}}{\mu_{++}} \frac{\mu_{++s}}{\mu_{+++}}=\frac{\mu_{e g+} \mu_{++s}}{\mu_{+++}} \tag{4}
\end{equation*}
$$

d. The fitted cell counts for model M_{0} are obtained by plugging $\hat{\mu}_{\text {eg+ }}=n_{\text {eg+ }}, \hat{\mu}_{++s}=$ n_{++s} and $\hat{\mu}_{+++}=n_{+++}=n$ into (4). This yields

$$
\begin{equation*}
\hat{\mu}_{\text {egs }}=\frac{n_{\text {eg }+} n_{++s}}{n} \tag{5}
\end{equation*}
$$

where $n_{++1}=128, n_{++2}=93$ and $n=n_{++1}+n_{++2}=221$. By adding the tables for the two schools we find that $n_{11+}=25, n_{12+}=9, n_{21+}=57, n_{22+}=59, n_{31+}=27$ and $n_{32+}=44$. Insertion into (5) gives (see also Table 3 of Appendix B of the problem sheet)

$$
\hat{\mu}_{e g 1}: \quad \hat{\mu}_{e g 2}:
$$

	g	
e	1	2
1	14.48	5.21
2	33.01	34.17
3	15.64	25.48

	g	
e	1	2
1	10.52	3.79
2	23.99	24.83
3	11.36	18.52

In order to test

$$
\begin{array}{ll}
H_{0}: & M_{0} \text { holds, } \\
H_{a}: & M_{1} \text { holds but not } M_{0},
\end{array}
$$

we use the likelihood ratio statistic

$$
\begin{aligned}
G^{2}\left(M_{0} \mid M_{1}\right) & =2 \sum_{e, g, s} n_{e g i} \log \left(n_{e g i} / \hat{\mu}_{e g i}\right) \\
& =2(15 \cdot \log (15 / 14.48)+\ldots+19 \cdot \log (19 / 18.52)) \\
& =1.6125 \\
& <\chi_{12-7}^{2}(0.05)=11.07
\end{aligned}
$$

Since H_{0} is not rejected, there is no significant difference between the two schools at level 0.05.

Problem 4

a. The parameters of M_{0} are listed in (3), and therefore the logistic regression model satisfies

$$
\begin{align*}
& \operatorname{logit}(P(G=2 \mid E=e, S=s)) \\
& \quad=\log (P(G=2 \mid E=e, S=s))-\log (P(G=1 \mid E=e, S=s)) \\
& \quad=\log (P(E=e, G=2, S=s))-\log (P(E=e, G=1, S=s)) \\
& \quad=\log \left(\pi_{e 2 s}\right)-\log \left(\pi_{e 1 s}\right) \\
& \quad=\log \left(\mu_{e 2 s}\right)-\log \left(\mu_{e 1 s}\right) \tag{6}\\
& \quad=\left(\lambda+\lambda_{e}^{E}+\lambda_{2}^{G}+\lambda_{s}^{S}+\lambda_{e 2}^{E G}\right)-\left(\lambda+\lambda_{e}^{E}+\lambda_{1}^{G}+\lambda_{s}^{S}+\lambda_{e 1}^{E G}\right) \\
& \quad=\left(\lambda_{2}^{G}-\lambda_{1}^{G}\right)+\left(\lambda_{e 2}^{E G}-\lambda_{e 1}^{E G}\right) \\
& \quad=\alpha+\beta_{e},
\end{align*}
$$

where in the fourth step we made use of $\pi_{\text {egs }}=\mu_{\text {egs }} / \mu_{+++}$and in the last step we introduced $\alpha=\lambda_{2}^{G}-\lambda_{1}^{G}$ and $\beta_{e}=\beta_{e}^{E}=\lambda_{e 2}^{E G}-\lambda_{e 1}^{E G}$ for $e=1,2,3$. Since $\lambda_{31}^{E G}=\lambda_{32}^{E G}=0$, it follows that $\beta_{3}=0$, so there are only three parameters $\left(\alpha, \beta_{1}, \beta_{2}\right)$.

Model (6) is an ANOVA type logistic regression model for an outcome variable G and two categorical predictor variables E and S, of which the second has no effect.
b. It follows from (6) that

$$
\theta=e^{\beta_{1}}=\frac{e^{\alpha+\beta_{1}}}{e^{\alpha}}=\frac{P(G=2 \mid E=1, S=s) / P(G=1 \mid E=1, S=s)}{P(G=2 \mid E=3, S=s) / P(G=1 \mid E=3, S=s)}
$$

is the odds ratio for a student from a low income family to have high grades relative to one from a high income family (regardless of school). The estimated odds ratio is $\hat{\theta}=\exp (-1.51)=0.221$. As a remark we notice that this conforms with Problem 3 , since

$$
\hat{\theta}=\frac{n_{12+} n_{31+}}{n_{11+} n_{32+}}=\frac{9 \cdot 27}{25 \cdot 44}=0.221 .
$$

c. A 95% Wald type confidence interval is

$$
\left(\hat{\beta}_{1} \pm 1.96 \sqrt{\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}\right)}\right)=(-1.51 \pm 1.96 \cdot \sqrt{0.2109})=(-2.4101,-0.6099)
$$

for β_{1} and

$$
(\exp (-2.4101), \exp (-0.6099))=(0.0898,0.5434)
$$

for θ.
d. The saturated logistic regression model satisfies

$$
\operatorname{logit}(P(G=2 \mid E=e, S=s))=\alpha+\beta_{e}^{E}+\beta_{s}^{S}+\beta_{e s}^{E S}
$$

for $e \in\{1,2,3\}$ and $s \in\{1,2\}$. All effect parameters are put zero when at least one index satisfies $e=3$ or $s=2$. This gives a parameter vector $\left(\alpha, \beta_{1}^{E}, \beta_{2}^{E}, \beta_{1}^{S}, \beta_{11}^{E S}, \beta_{21}^{E S}\right)$ with $3 \times 2=6$ parameters, equal to the number of possible combinations (e, s) of the two predictor variables. Therefore the ANOVA type model (6) has

$$
\mathrm{df}=6-3=3
$$

Problem 5

a. We find that

$$
\log f(y ; \theta, \phi)=\frac{y \theta-b(\theta)}{a(\phi)}+c(y, \phi) \Longrightarrow u(y)=\frac{y-b^{\prime}(\theta)}{a(\phi)}
$$

so that

$$
0=E(u(Y))=\frac{E(Y)-b^{\prime}(\theta)}{a(\phi)} \Longrightarrow \mu=E(Y)=b^{\prime}(\theta)
$$

and hence

$$
u(y)=\frac{y-\mu}{a(\phi)} .
$$

b. Suppose $y \in\{0, \phi, 2 \phi, \ldots\}$. The probability function of the ODP distribution is

$$
\begin{aligned}
f(Y) & =P(Y=y)=P(Y / \phi=y / \phi)=e^{-\mu / \phi(\mu / \phi)^{y / \phi}}(\underline{y})! \\
& =\exp \left(\frac{y \log (\mu)-\mu}{\phi}-(y / \phi) \log (\phi)-\log ((y / \phi)!)\right) .
\end{aligned}
$$

It belongs to the exponential dispersion family, with natural parameter $\theta=\log (\mu)$, $a(\phi)=\phi, b(\theta)=\mu=e^{\theta}$ and $c(y, \phi)=-(y / \phi) \log (\phi)-\log ((y / \phi)!)$.
c. Since $\theta_{i}=\log \left(\mu_{i}\right)$ is the natural parameter, $\log \left(\mu_{i}\right)$ is the canonical link function and

$$
\log \left(\mu_{i}\right)=\sum_{j=1}^{p} x_{i j} \beta_{j}=\boldsymbol{x}_{i} \boldsymbol{\beta}
$$

so that

$$
Y_{i} / \phi \sim \operatorname{Po}\left(\mu_{i} / \phi\right)=\operatorname{Po}\left(\exp \left(\boldsymbol{x}_{i} \boldsymbol{\beta}\right) / \phi\right) .
$$

d. Let

$$
L(\boldsymbol{\beta})=\sum_{i=1}^{n} \log f\left(y_{i} ; x_{i}, \boldsymbol{\beta}\right)
$$

be the log likelihood. It then follows that

$$
\begin{equation*}
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{\partial \log f\left(y_{i}\right)}{\partial \beta_{j}} \stackrel{\text { hint }}{=} \sum_{i=1}^{n} x_{i j} \frac{\partial \log f\left(y_{i}\right)}{\partial \theta_{i}} \stackrel{a)}{=} \sum_{i=1}^{n} \frac{x_{i j}\left(y_{i}-\mu_{i}\right)}{a(\phi)} \stackrel{b)}{=} \sum_{i=1}^{n} \frac{x_{i j}\left(y_{i}-\mu_{i}\right)}{\phi} . \tag{7}
\end{equation*}
$$

Since

$$
\operatorname{Var}\left(Y_{i}\right)=\phi^{2} \operatorname{Var}\left(Y_{i} / \phi\right)=\phi^{2} \cdot \mu_{i} / \phi=\phi \mu_{i},
$$

and all Y_{i} are independent, this gives

$$
\begin{align*}
J_{j k} & =\operatorname{Cov}\left(\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{j}}, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{k}}\right) \\
& =\operatorname{Cov}\left(\sum_{i=1}^{n} \frac{x_{i j}\left(Y_{i}-\mu_{i}\right)}{\phi}, \sum_{i=1}^{n} \frac{x_{i k}\left(Y_{i}-\mu_{i}\right)}{\phi}\right) \\
& =\sum_{i=1}^{n} \operatorname{Cov}\left(\frac{x_{i j}\left(Y_{i}-\mu_{i}\right)}{\phi}, \frac{x_{i k}\left(Y_{i}-\mu_{i}\right)}{\phi}\right) \tag{8}\\
& =\sum_{i=1}^{n} x_{i j} x_{i k} \operatorname{Var}\left(Y_{i}\right) / \phi^{2} \\
& =\sum_{i=1}^{n} x_{i j} x_{i k} \mu_{i} / \phi .
\end{align*}
$$

Alternatively one may differentiate (7) with respect to β_{k} and use that

$$
J_{j k}=-E\left(\frac{\partial L^{2}(\boldsymbol{\beta})}{\partial \beta_{j} \partial \beta_{k}}\right)=-\frac{\partial L^{2}(\boldsymbol{\beta})}{\partial \beta_{j} \partial \beta_{k}}=-\sum_{i=1}^{n} \frac{\partial^{2} \log f\left(y_{i}\right)}{\partial \beta_{j} \partial \beta_{k}}=\sum_{i=1}^{n} \frac{x_{i j} \partial \mu_{i} / \partial \beta_{k}}{\phi},
$$

where the second equality holds for a generalized linear model with a canonical link function. Together with $\partial \mu_{i} / \partial \beta_{k}=x_{i k} \mu_{i}$, this implies (8).

