You are allowed to bring an A-4 page (double sides) with whatever you think is important. You must motivate well your arguments.

1. (i) Show that the bounded closed interval $[a, b]=\operatorname{conv}(\{a, b\})$.
(ii) Let X be a nonempty bounded subset of \mathbb{R}^{n}. Define a function $S_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $S_{X}(x)=$ $\sup \{\langle y, x\rangle: y \in X\}$. Show that $S_{X}(x)$ is a convex function.
(iii) Show that $S_{X}=S_{\operatorname{conv}(X)}$. Determine $S_{[a, b]}$ where $[a, b]$ is a closed interval on the real line.
(iv) Show that $\langle\xi, d\rangle \leq f^{\prime}(x ; d)$ for all $\xi \in \partial f(x)$ and all $d \in \mathbb{R}^{n}$.
2. Consider the following problem where $y=\left(y_{1}, \ldots, y_{n}\right)^{t}, y_{0}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)^{t}$, and $e=(1, \ldots, 1)^{t}$ belong to $\mathbb{R}^{n}: \min \left\{y_{1}:\left\|y-y_{0}\right\|^{2} \leq \frac{1}{n(n-1)}, e^{t} y=1\right\}$. Write the KKT conditions for this problem and verify that $\left(0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)^{t}$ is an optimal solution. Interpret this problem with respect to an inscribed sphere in the simplex defined by $\left\{y: e^{t} y=1, y \geq 0\right\}$.
3. Consider the binary optimization problem: $\min \left\{x^{T} Q x: x_{i} \in\{-1,1\}\right\}$, where $Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$. Show that its Lagrange dual problem is in the following form: $\max \{\operatorname{tr} \Lambda: Q-\Lambda \geq 0\}$, where Λ is a diagonal matrix.
Hint: the constraint $x_{i} \in\{-1,1\}$ is equivalent to $x_{i}^{2}=1$.
4. Use Phase I of the simplex method to determine whether the following system of equations has a nonnegative solution.

$$
4 x_{1}+5 x_{2}+x_{3}+2 x_{4}=0,3 x_{1}+3 x_{2}+x_{3}+x_{4}=1
$$

Find one such solution, if it exists.
5. Formulate the minimization problem Minimize $\|A x-b\|_{\infty}$ (ℓ_{∞}-norm approximation) as an LP problem. Explain in detail the relation between the optimal solution and the solution of its equivalent LP.

You have finished the exam if your homework $p_{h} \geq 24$. Continue otherwise
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at x and let the vectors d_{1}, \ldots, d_{n} in \mathbb{R}^{n} be linearly independent. Assume that the minimum of $f\left(x+\lambda d_{j}\right)$ over $\lambda \in \mathbb{R}$ occurs at $\lambda=0$ for $j=1, \ldots, n$. Show that $\nabla f(x)=0$. Does this imply that f has a local minimum at $x ?$
You have finished the exam if your homework $23 \geq p_{h} \geq 16$. Continue otherwise.
7. (i) Show, using the theory developed in this course, $G(x) \leq A(x)$.
(ii) Justify if the set $\left\{x \in \mathbb{R}_{++}^{n}: G(x) \geq A(x)\right\}$ is convex or not. Is this set a cone if we define $0^{\frac{1}{n}}=0$?

