Tentamensskrivning i Optimering AN, 7,5 hp January 12, 2022

You are allowed to bring an A-4 page (double sides) with whatever you think is important. You must motivate well your arguments.

- 1. (i) Show that the bounded closed interval $[a, b] = \operatorname{conv}(\{a, b\})$.
 - (ii) Let X be a nonempty bounded subset of \mathbb{R}^n . Define a function $S_X : \mathbb{R}^n \to \mathbb{R}$ by $S_X(x) = \sup\{\langle y, x \rangle : y \in X\}$. Show that $S_X(x)$ is a convex function.
 - (iii) Show that $S_X = S_{\text{conv}(X)}$. Determine $S_{[a,b]}$ where [a,b] is a closed interval on the real line.
 - (iv) Show that $\langle \xi, d \rangle \leq f'(x; d)$ for all $\xi \in \partial f(x)$ and all $d \in \mathbb{R}^n$.
- 2. Consider the following problem where $y = (y_1, ..., y_n)^t$, $y_0 = (\frac{1}{n}, ..., \frac{1}{n})^t$, and $e = (1, ..., 1)^t$ belong to \mathbb{R}^n : min $\{y_1 : \|y - y_0\|^2 \le \frac{1}{n(n-1)}, e^t y = 1\}$. Write the KKT conditions for this problem and verify that $(0, \frac{1}{n-1}, ..., \frac{1}{n-1})^t$ is an optimal solution. Interpret this problem with respect to an inscribed sphere in the simplex defined by $\{y : e^t y = 1, y \ge 0\}$. 13 p
- 3. Consider the binary optimization problem: $\min\{x^TQx : x_i \in \{-1,1\}\}$, where $Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $x = (x_1, ..., x_n)^t$. Show that its Lagrange dual problem is in the following form: $\max\{\operatorname{tr}\Lambda : Q - \Lambda \ge 0\}$, where Λ is a diagonal matrix. Hint: the constraint $x_i \in \{-1,1\}$ is equivalent to $x_i^2 = 1$. 13 p
- 4. Use Phase I of the simplex method to determine whether the following system of equations has a nonnegative solution.

$$4x_1 + 5x_2 + x_3 + 2x_4 = 0, 3x_1 + 3x_2 + x_3 + x_4 = 1$$

n, if it exists. 13 p

- Find one such solution, if it exists.
- 5. Formulate the minimization problem Minimize $||Ax b||_{\infty}$ (ℓ_{∞} -norm approximation) as an LP problem. Explain in detail the relation between the optimal solution and the solution of its equivalent LP. 12 p

You have finished the exam if your homework $p_h \ge 24$. Continue otherwise

6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at x and let the vectors $d_1, ..., d_n$ in \mathbb{R}^n be linearly independent. Assume that the minimum of $f(x + \lambda d_j)$ over $\lambda \in \mathbb{R}$ occurs at $\lambda = 0$ for j = 1, ..., n. Show that $\nabla f(x) = 0$. Does this imply that f has a local minimum at x? 12 p

You have finished the exam if your homework $23 \ge p_h \ge 16$. Continue otherwise.

(i) Show, using the theory developed in this course, G(x) ≤ A(x).
(ii) Justify if the set {x ∈ ℝⁿ₊₊ : G(x) ≥ A(x)} is convex or not. Is this set a cone if we define 0¹/_n = 0?

 $12\,\mathrm{p}$

13 p

You have finished the exam if your homework $15 \ge p_h \ge 8$. Continue otherwise.

8. In line search to find optimal solution to nonlinear optimization problems we often need to solve the the following optimization problem

 $\min\{\|-\nabla f(x) - d\|^2 : A_1 d = 0\},\$

where A_1 is a $\nu \times n$ matrix with rank ν and x is fixed.

(i) Find the optimal solution \bar{d} without using the KKT conditions or Lagrange relaxation.

- (ii) Solve \bar{d} from the KKT system.
- (iii) Find \bar{d} in case $\nabla f(x) = (2, -3, 3)^t$ and $A_1 = \begin{pmatrix} 2 & 2 & -3 \\ 2 & 1 & 2 \end{pmatrix}$.

To get the graded paper fill in the formula at

https://survey.su.se/Survey/42570/en or https://survey.su.se/Survey/42570/sv