1. (i) Show that the bounded closed interval $[a, b]=\operatorname{conv}(\{a, b\})$.
(ii) Let $X$ be a nonempty bounded subset of $\mathbb{R}^{n}$. Define a function $S_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $S_{X}(x)=\sup \{\langle y, x\rangle: y \in X\}$. Show that $S_{X}(x)$ is a convex function.
(iii) Show that $S_{X}=S_{\operatorname{conv}(X)}$. Determine $S_{[a, b]}$ where $[a, b]$ is a closed interval over the real line.
(iv) Show that $\langle\xi, d\rangle \leq f^{\prime}(x ; d)$ for all $\xi \in \partial f(x)$ and all $d \in \mathbb{R}^{n}$.

Solution. (i) For any $x \in[a, b], x$ can be written as $x=(1-\lambda) a+\lambda b$ for all $\lambda \in[0,1]$, i.e. $[a, b] \subseteq \operatorname{conv}(\{a, b\})$. Reverse the argument we get the $\operatorname{conv}(\{a, b\}) \subseteq[a, b]$.
(ii) The epigraph of $S_{X}$ is

$$
\operatorname{epi} S_{X}=\{(x, t):\langle y, x\rangle \leq t, \forall y \in X\}=\bigcap_{y \in X}\{(x, t):\langle y, x\rangle \leq t\}
$$

is closed and convex since it is the intersection of closed halfspaces in $\mathbb{R}^{n} \times \mathbb{R}$.
(iii) Let $Y=\operatorname{conv} X$. Since $X \subseteq Y$, we obviously have $S_{X}(x) \leq S_{Y}(x)$. Assume the inequality is strict for some $x$, i.e. $\langle u, x\rangle<\langle v, x\rangle$ for all $u \in X$ and some $v \in Y$. But $v$ is the convex combination of a set of points $v_{i} \in X$ by definition, that is, $v=\sum_{i} \lambda_{i} v_{i}$ with $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i}=1$. Since $\left\langle v_{i}, x\right\rangle<\langle v, x\rangle$ for alla $i$ this would imply

$$
\langle v, x\rangle=\sum_{i} \lambda_{i}\left\langle u_{i}, x\right\rangle<\sum_{i} \lambda_{i}\langle v, x\rangle=\langle v, x\rangle
$$

a contradiction, proving the equality.
Clearly $S_{[a, b]}(x)=\{a x, b x\}$.
(iv) By definition, $\xi \in \partial f(x)$ gives

$$
f(y) \geq f(x)+\langle\xi, y-x\rangle, \forall x, y
$$

Now, using this inequality for $y=x+\tau d$ for sufficiently small $\tau>0$, we have

$$
\frac{f(x+\tau d)-f(x)}{\tau} \geq \frac{\langle\xi, \tau d\rangle}{\tau}=\langle\xi, d\rangle
$$

Hence

$$
f^{\prime}(x ; d)=\lim _{\tau \searrow 0} \frac{f(x+\tau d)-f(x)}{\tau} \geq\langle\xi, d\rangle
$$

[Note that the inequality is indeed an equality, whose proof is more involved.]
2. Consider the following problem where $y=\left(y_{1}, \ldots, y_{n}\right)^{t}, y_{0}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)^{t}$, and $e=(1, \ldots, 1)^{t}$ belong to $\mathbb{R}^{n}: \min \left\{y_{1}:\left\|y-y_{0}\right\|^{2} \leq \frac{1}{n(n-1)}, e^{t} y=1\right\}$. Write the KKT conditions for this problem and verify that $\left(0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)^{t}$ is an optimal solution. Interpret this problem with respect to an inscribed sphere in the simplex defined by $\left\{y: e^{t} y=1, y \geq 0\right\}$.
Solution. The KKT conditions are

- $\left\|y-y_{0}\right\|^{2} \leq \frac{1}{n(n-1)}, e^{t} y=1$
- $\lambda \geq 0$
- $\lambda\left(\left\|y-y_{0}\right\|^{2} \frac{1}{n(n-1)}\right)=0$
- $e_{1}+2 \lambda\left(y-\frac{1}{n} e\right)+\mu e=0$

Let $y^{*}=\left(0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)^{t}$. We see readily

$$
e^{t} y^{*}=1 \text { and }\left\|y^{*}-y_{0}\right\|^{2}=\left\|\left(-\frac{1}{n}, \frac{1}{n(n-1)}, \cdots \frac{1}{n(n-1)}\right)\right\|^{2}=\frac{1}{n(n-1)}
$$

meaning $y^{*}$ is feasible. The last equation in the KKT conditions with $y=y^{*}$ yields

$$
\mu=-\frac{2 \lambda}{n(n-1)}, 1-\frac{2 \lambda}{n}+\mu=0
$$

Then $\lambda=\frac{n-1}{2} \geq 0 \mu=-\frac{1}{n}$. So $y^{*}$ is a KKT point. Since the objective function is linear, it is convex and the constraints is the intersection of a ball (convex set) and a simplex (convex set) so the feasible set is convex. Thus this optimization problem is a convex program. Therefore the KKT conditions are also sufficient, proving $y^{*}$ is the optimal solution.
Let $S=\left\{y: e^{t} y=1, y \geq 0\right\}$. We see that the dimension of $\operatorname{Aff}(S)$ is $n-1$. Its center is $y_{0}$. Now we want to find the radius $r$ of a sphere centered at $y_{0}$ so that the sphere is inscribed with $S$. So $r$ is the distance from $y_{0}$ to the center of a simplex which is of one dimension less that that of $S$, say, formed in thee $y_{2}, \ldots, y_{n}$-space. So in the whole $y$ space the coordinates are given by $\left(0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)$. Hence

$$
r^{2}=(n-1)\left(\frac{1}{n-1}-\frac{1}{n}\right)^{2}+\frac{1}{n^{2}}=\frac{1}{n(n-1)}
$$

So the given problem examines the $(n-1)$-dimensional sphere formed by the intersection of the sphere given by $\left\|y-y_{0}\right\|^{2} \leq r^{2}$ with the hyperplane $e^{t} y=1$, without the nonnegative restrictions $y \geq 0$, and looks for the minimal value of any coordinate in this region. In this problem it is $\overline{y_{1}}$.
3. Consider the binary optimization problem: $\min \left\{x^{T} Q x: x_{i} \in\{-1,1\}\right\}$, where $Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$. Show that its Lagrange dual problem is in the following form: $\max \{\operatorname{tr} \Lambda: Q-\Lambda \geq 0\}$, where $\Lambda$ is a diagonal matrix.
Solution. Since $x_{i} \in\{-1,1\}$ is equivalent to $x_{i}^{2}-1=0$, the optimization problem at hand can be formulated as $\min \left\{x^{T} Q x: x_{i}^{2}=1\right\}$. Introduce the Lagrange multiplier vector $\lambda \in \mathbb{R}^{n}$ and let $\Lambda=\operatorname{diag}(\lambda)$. Now the Lagrange function is

$$
L(x, \lambda)=x^{t} Q x+\sum_{i=1}^{n} \lambda_{i}\left(1-x_{i}^{2}\right)=x^{t} Q x-x^{t} \Lambda x+\operatorname{tr} \Lambda=x^{t}(Q-\Lambda) x+\operatorname{tr} \Lambda
$$

Note that $L(x, \lambda) \geq \operatorname{tr} \Lambda$ if $Q-\Lambda \geq 0$. So the dual problem is

$$
\max \{\operatorname{tr} \Lambda: Q-\Lambda \geq 0\}
$$

4. Usw Phase I of the simplex method to determine whether the following system of equations has a nonnegative solution.

$$
4 x_{1}+5 x_{2}+x_{3}+2 x_{4}=0,3 x_{1}+3 x_{2}+x_{3}+x_{4}=1
$$

Find one such solution if it exists
Solution. Introduce two artificial variables $x_{5}$ and $x_{6}$ (nonnegative) and minimize $x_{5}+x_{6}$. Let $x=\left(x_{1}, \ldots, x_{6}\right)^{t}$. The Simplex Phase I problem is

$$
\min \left\{(0,0,0,0,1,1) x:\left(\begin{array}{llllll}
4 & 5 & 1 & 2 & 1 & 0 \\
3 & 3 & 1 & 1 & 0 & 1
\end{array}\right) x=\binom{0}{1}\right\}
$$

or

$$
\begin{array}{llllll|l}
4 & 5 & 1 & 2 & 1 & 0 & 0 \\
3 & 3 & 1 & 1 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

Suitable basic variables are $x_{5}, x_{6}$ and put it in the standard form

| 4 | 5 | 1 | 2 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 3 | 1 | 1 | 0 | 1 | 1 |
| -7 | -8 | -2 | -3 | 0 | 0 | -1 |

Now choose $x_{3}$ as basic variable we get a new tableau

| 4 | 5 | 1 | 2 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | -2 | 0 | -1 | -1 | 1 | 1 |
| 1 | 2 | 0 | 1 | 3 | 0 | -1 |

We see that all reduced costs are $\geq 0$, implying that we reach the optimum, which is achieved at $x_{6}=1$ and the other variables are 0 . So $\min x_{5}+x_{6}=1$, that is the original system does not have a solution.
5. Formulate the minimization problem Minimize $\|A x-b\|_{\infty}$ ( $\ell_{\infty}$-norm approximation) as an LP problem. Explain in detail the relation between the optimal solution and the solution of its equivalent LP.

Solution. It is equivalent to the LP

$$
\min \{y: A x-b \leq y e, A x-b \geq-y e\}
$$

in the variables $x, y$, where $e$ is an all 1 vector. Now we show the equivalence. Assume $x$ is fixed in this problem, and we optmized only over $y$. The constraints say that $-y \leq a_{k}^{t} x-b_{k} \leq$ $y$, for each $k$, i.e., $y \geq\left|a_{k}^{t} x-b_{k}\right|$. Then $y \geq \max _{k}\left|a^{t} x-b\right|=\|A x-b\|_{\infty}$. It says the optimal value of the LP is $\|A x-b\|_{\infty}$ if $x$ is fixed. Hence optimizing over $x$ and $y$ at the same time is equivalent to the original problem.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $x$ and let the vectors $d_{1}, \ldots, d_{n}$ in $\mathbb{R}^{n}$ be linearly independent. Assume that the minimum of $f\left(x+\lambda d_{j}\right)$ over $\lambda \in \mathbb{R}$ occurs at $\lambda=0$ for $j=1, \ldots, n$. Show that $\nabla f(x)=0$. Does this imply that $f$ has a local minimum at $x$ ?
Solution. Since the minimum of $f\left(x+\lambda d_{j}\right)$ over $\lambda \in \mathbb{R}$ attained at $\lambda=0$ for $j=1, \ldots, n$, we have that

$$
\left.\frac{d}{d \lambda} f\left(x+\lambda d_{j}\right)\right|_{\lambda=0}=\left\langle\nabla f(x), d_{j}\right\rangle, \forall j=1, \ldots, n
$$

i.e.this homogeneous system of linear equations (for $\nabla f(x)$ ) with the coefficient matrix $A$ with $d_{j}^{t}$ as rows. Now $d_{1}, \ldots, d_{n}$ are linearly independent, i.e. it has a unique solution which is trivial. Hence $\nabla f(x)=0$. However this does not imply that $f$ has a local minimum at $x$. For example Figure 4.1 (BSS, p. 172) with $x=(0,0), d_{1}=(1,0)$, and $d_{2}=(0,1)$.
7. Assume $x_{i}>0, i=1, \ldots, n$. Let $A=\frac{x_{1}+\cdots+x_{n}}{n}$, and $G=\left(x_{1} \cdot \ldots \cdot x_{n}\right)^{\frac{1}{n}}$.
(i) Show, using the theory developed in this course, $G(x) \leq A(x)$
(ii) Justify if the set $\left\{x \in \mathbb{R}_{++}^{n}: G(x) \geq A(x)\right\}$ is convex or not. Is this set a cone if if we define $0^{\frac{1}{n}}=0$ ?

Solution. We show that $\frac{1}{n}\left(\log x_{1}+\cdots \log x_{n}\right) \leq \log \frac{x_{1}+\cdots+x_{n}}{n}$. Now $\log$ cot is a concave function so the inequality follows from Jensen's inequality with $\lambda_{1}=\ldots=\lambda_{n}=\frac{1}{n}$.
Since $A(x)$ is convex and $-G(x)$ (See lecture notes) is convex, the function $A(x)-G(x)$ is a convex function. Now the set is a level set of a convex function, so it is convex. Indeed this is a convex cone because for anly $\lambda \geq 0 A(\lambda x)-G(\lambda x)=A(\lambda x)-G(\lambda x)=\lambda(A(x)-G(x)) \leq 0$.
8. In line search to find optimal solution to nonlinear optimization problems we often need to solve the the following optimization problem

$$
\min \left\{\|-\nabla f(x)-d\|^{2}: A_{1} d=0\right\}
$$

where $A_{1}$ is a $\nu \times n$ matrix with $\operatorname{rank} \nu$ and $x$ is fixed.
(i) Find the optimal solution $\bar{d}$ is an optimal solution without using the KKT conditions or Lagrange relaxation.
(ii) Solve $\bar{d}$ from the KKT system.
(iii) Find $\bar{d}$ in case $\nabla f(x)=(2,-3,3)^{t}$ and $A_{1}=\left(\begin{array}{ccc}2 & 2 & -3 \\ 2 & 1 & 2\end{array}\right)$.

Solution. By the projection theorem we know that $\bar{d}$ is optimal if and only if $\bar{d}$ is a projection of $-\nabla f(x)$ onto the nullspace of $A_{1}$. So $\bar{d}=-\left(I-A_{1}^{t}\left(A_{1} A_{1}^{t}\right)^{-1} A_{1}\right) \nabla f(x)$. This can be obtained by the KTT system: $-\nabla f(x)=\bar{d}-A_{1}^{t} u, A_{1} \bar{d}=0$ by multiplying the first equation by $A_{1}$ together with the second equation and $A_{1}$ has full row rank. A straightforward computation gives $d=(-266,380,76)^{t} / 153$.

