1.

Solutions to the exam Optimization, January 12, 2022

(i) Show that the bounded closed interval [a,b] = conv({a,b}).

(ii) Let X be a nonempty bounded subset of R™. Define a function Sx : R® — R by
Sx(x) =sup{(y,z) : y € X}. Show that Sx(x) is a convex function.

(iii) Show that Sx = Sconv(x). Determine S|, where [a, b] is a closed interval over the real
line.

(iv) Show that (£,d) < f/(z;d) for all £ € 9f(z) and all d € R™.

Solution. (i) For any x € [a,b], x can be written as © = (1 — A)a + Ab for all A € [0,1], i.e
[a,b] C conv({a,b}). Reverse the argument we get the conv({a,b}) C [a, b].

(ii) The epigraph of Sx is

epiSx = {(2,1) : (y,2) <t,¥y € X} = ({(2, 1) : (y,2) <t}
yeX

is closed and convex since it is the intersection of closed halfspaces in R™ x R.

(iii) Let Y = convX. Since X C Y, we obviously have Sx(z) < Sy(x). Assume the
inequality is strict for some z, i.e. (u,z) < (v, ) for all v € X and some v € Y. But v is the
convex combination of a set of points v; € X by definition, that is, v =Y, \ju; with A; > 0,
> Ai = 1. Since (v;, x) < (v, z) for alla i this would imply

= ZA,-(ui,:v} < Z/\i<vyx> = (v, )

a contradiction, proving the equality.
Clearly S, () = {ax,bx}.
(iv) By definition, & € 0f(z) gives
f(y) Z f(gj) + <£,y*l'>, Vx,y

Now, using this inequality for y = x + 7d for sufficiently small 7 > 0, we have

flet+rd) = f(z) _ (& 7d)

! > 870 _ e a)
Hence Fla+7d) - Fla)
(o) = tim TEHTY > (6.d).

[Note that the inequality is indeed an equality, whose proof is more involved.]

. Consider the following problem where y = (yl,. )t yo = (&, .., D) and e = (1,..., 1)
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ety = 1}. Write the KKT conditions for this
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problem and verify that (0, —% P T ﬁ)t is an optimal solution. Interpret this problem with

respect to an inscribed sphere in the simplex defined by {y : e’y = 1,y > 0}.
Solution. The KKT conditions are

belong to R™: min{y; : ||y — vol?

o ly—wol® <
e \>0
o My = woll*5=55) =0
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Let y* = (0, 15, ..., =15)". We see readily
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e'y" =1 and |y" —yol* = [|(— )|? =

meaning y* is feasible. The last equation in the KKT conditions with y = y* yields
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Then \ = ”Tfl >0p= —%. So y* is a KKT point. Since the objective function is linear, it is
convex and the constraints is the intersection of a ball (convex set) and a simplex (convex set)
so the feasible set is convex. Thus this optimization problem is a convex program. Therefore
the KKT conditions are also sufficient, proving y* is the optimal solution.

Let S = {y:ely =1,y > 0}. We see that the dimension of Aff(S) is n — 1. Its center is yo.
Now we want to find the radius r of a sphere centered at yy so that the sphere is inscribed
with S. So r is the distance from yg to the center of a simplex which is of one dimension less
that that of S, say, formed in thee ys, ..., y,-space. So in the whole y space the coordinates

are given by (0, -1 L ). Hence
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So the given problem examines the (n — 1)-dimensional sphere formed by the intersection of
the sphere given by |y — vo||> < 72 with the hyperplane efy = 1, without the nonnegative
restrictions y > 0, and looks for the minimal value of any coordinate in this region. In this
problem it is ;.

. Consider the binary optimization problem: min{z”Qx : z; € {—1,1}}, where Q € R™ " is
symmetric positive definite and = = (1, ..., x,)!. Show that its Lagrange dual problem is in
the following form: max{trA : Q@ — A > 0}, where A is a diagonal matrix.

Solution. Since z; € {—1,1} is equivalent to 2? — 1 = 0, the optimization problem at hand
can be formulated as min{z? Qx : x? = 1}. Introduce the Lagrange multiplier vector A € R™
and let A = diag(\). Now the Lagrange function is

L(z,)\) = 2'Qx + Z (1 —22) = 2'Qx — a' Az + trA = 29(Q — A)z + trA.
i=1

Note that L(z,A) > trA if @ — A > 0. So the dual problem is

max{trA : Q@ — A > 0}.

. Usw Phase I of the simplex method to determine whether the following system of equations
has a nonnegative solution.

41 +dbro+ 23+ 224 =0,321 + 322+ 23+ 24 =1

Find one such solution if it exists

Solution. Introduce two artificial variables x5 and ¢ (nonnegative) and minimize x5 + .
Let x = (x1,...,26)". The Simplex Phase I problem is
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Suitable basic variables are x5, zg and

4 5 1 2 1 0|0
3 3 1 1 0 1] 1
-7 =8 =2 =3 0 0]-1
Now choose x3 as basic variable we get a new tableau
4 5 1 2 1 0] 0
-1 -2 0 -1 -1 1| 1
I 2 0 T 3 0]-1

We see that all reduced costs are > 0, implying that we reach the optimum, which is achieved
at x¢ = 1 and the other variables are 0. So min x5 4+ g = 1, that is the original system does
not have a solution.

. Formulate the minimization problem Minimize ||Az — b||loc (foo-norm approximation) as an
LP problem. Explain in detail the relation between the optimal solution and the solution of
its equivalent LP.



Solution. It is equivalent to the LP
min{y : Az — b < ye, Ax — b > —ye}

in the variables x,y, where e is an all 1 vector. Now we show the equivalence. Assume x is
fixed in this problem, and we optmized only over y. The constraints say that —y < alx—by, <
y, for each k, i.e., y > |atx — bg|. Then y > maxy [a'x — b| = | Az — b||oo. It says the optimal
value of the LP is ||Az — b||« if = is fixed. Hence optimizing over x and y at the same time
is equivalent to the original problem.

. Let f:R™ — R be differentiable at x and let the vectors dy, ...,d, in R™ be linearly indepen-
dent. Assume that the minimum of f(x + Ad;) over A € R occurs at A =0 for j =1,...,n.

Show that V f(x) = 0. Does this imply that f has a local minimum at ?

Solution. Since the minimum of f(z + Ad;) over A € R attained at A =0 for j =1,...,n, we
have that

Lt Ay = (VI@),dy), ¥ =1,.0m,

i.e.this homogeneous system of linear equations (for V f(x)) with the coefficient matrix A
with d; as rows. Now dy, ..., d, are linearly independent, i.e. it has a unique solution which

is trivial. Hence V f(z) = 0. However this does not imply that f has a local minimum at x.
For example Figure 4.1 (BSS, p. 172) with « = (0,0), d; = (1,0), and dy = (0,1).
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. Assume z; > 0,0 =1,...,n. Let A =254 and G = (21 - ...~ )

(i) Show, using the theory developed in this course, G(z) < A(x)

(ii) Justify if the set {x € R, : G(z) > A(x)} is convex or not. Is this set a cone if if we
define 0% = 0?

Solution. We show that %(logﬂcl + ---logz,) < log % Now log cot is a concave
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function so the inequality follows from Jensen’s inequality with A\; = ... = A, = .

Since A(x) is convex and —G(z) (See lecture notes) is convex, the function A(z) — G(z) is a
convex function. Now the set 1s a level set of a convex function, so it is convex. Indeed this is
a convex cone because for anly A > 0 A(Az) —G(A\x) = A(\x) —G(Az) = AM(A(z) —G(z)) < 0.

. In line search to find optimal solution to nonlinear optimization problems we often need to
solve the the following optimization problem

min{|| — Vf(z) — d|?: Aid = 0},
where A; is a v X n matrix with rank v and z is fixed.

(i) Find the optimal solution d is an optimal solution without using the KKT conditions
or Lagrange relaxation.

(ii) Solve d from the KKT system.

(iii) Find d in case Vf(z) = (2,-3,3)" and A; = (% % _23>

Solution. By the projection theorem we know that d is optimal if and only if d is a projection
of =V f(x) onto the nullspace of A;. So d = —(I — A{(A1A4})"1 A1)V f(z). This can be
obtained by the KTT system: —V f(z) = d — Abu,A;d = 0 by multiplying the first equation
by A; together with the second equation and A; has full row rank. A straightforward
computation gives d = (—266, 380, 76)* /153.



