
Solutions to the exam Optimization, January 12, 2022

1. (i) Show that the bounded closed interval [a, b] = conv({a, b}).
(ii) Let X be a nonempty bounded subset of Rn. Define a function SX : Rn → R by

SX(x) = sup{〈y, x〉 : y ∈ X}. Show that SX(x) is a convex function.

(iii) Show that SX = Sconv(X). Determine S[a,b] where [a, b] is a closed interval over the real
line.

(iv) Show that 〈ξ, d〉 ≤ f ′(x; d) for all ξ ∈ ∂f(x) and all d ∈ Rn.

Solution. (i) For any x ∈ [a, b], x can be written as x = (1 − λ)a + λb for all λ ∈ [0, 1], i.e.
[a, b] ⊆ conv({a, b}). Reverse the argument we get the conv({a, b}) ⊆ [a, b].

(ii) The epigraph of SX is

epiSX = {(x, t) : 〈y, x〉 ≤ t,∀y ∈ X} =
⋂
y∈X
{(x, t) : 〈y, x〉 ≤ t}

is closed and convex since it is the intersection of closed halfspaces in Rn × R.

(iii) Let Y = convX. Since X ⊆ Y , we obviously have SX(x) ≤ SY (x). Assume the
inequality is strict for some x, i.e. 〈u, x〉 < 〈v, x〉 for all u ∈ X and some v ∈ Y . But v is the
convex combination of a set of points vi ∈ X by definition, that is, v =

∑
i λivi with λi ≥ 0,∑

i λi = 1. Since 〈vi, x〉 < 〈v, x〉 for alla i this would imply

〈v, x〉 =
∑
i

λi〈ui, x〉 <
∑
i

λi〈v, x〉 = 〈v, x〉

a contradiction, proving the equality.

Clearly S[a,b](x) = {ax, bx}.
(iv) By definition, ξ ∈ ∂f(x) gives

f(y) ≥ f(x) + 〈ξ, y − x〉, ∀x, y

Now, using this inequality for y = x+ τd for sufficiently small τ > 0, we have

f(x+ τd)− f(x)

τ
≥ 〈ξ, τd〉

τ
= 〈ξ, d〉.

Hence

f ′(x; d) = lim
τ↘0

f(x+ τd)− f(x)

τ
≥ 〈ξ, d〉.

[Note that the inequality is indeed an equality, whose proof is more involved.]

2. Consider the following problem where y = (y1, ..., yn)t, y0 = ( 1
n , ...,

1
n )t, and e = (1, ..., 1)t

belong to Rn: min{y1 : ‖y − y0‖2 ≤ 1
n(n−1) , e

ty = 1}. Write the KKT conditions for this

problem and verify that (0, 1
n−1 , ...,

1
n−1 )t is an optimal solution. Interpret this problem with

respect to an inscribed sphere in the simplex defined by {y : ety = 1, y ≥ 0}.
Solution. The KKT conditions are

• ‖y − y0‖2 ≤ 1
n(n−1) , e

ty = 1

• λ ≥ 0

• λ(‖y − y0‖2 1
n(n−1) ) = 0

• e1 + 2λ(y − 1
ne) + µe = 0

Let y∗ = (0, 1
n−1 , ...,

1
n−1 )t. We see readily

ety∗ = 1 and ‖y∗ − y0‖2 = ‖(− 1

n
,

1

n(n− 1)
, ...

1

n(n− 1)
)‖2 =

1

n(n− 1)
,

meaning y∗ is feasible. The last equation in the KKT conditions with y = y∗ yields

µ = − 2λ

n(n− 1)
, 1− 2λ

n
+ µ = 0.
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Then λ = n−1
2 ≥ 0 µ = − 1

n . So y∗ is a KKT point. Since the objective function is linear, it is
convex and the constraints is the intersection of a ball (convex set) and a simplex (convex set)
so the feasible set is convex. Thus this optimization problem is a convex program. Therefore
the KKT conditions are also sufficient, proving y∗ is the optimal solution.

Let S = {y : ety = 1, y ≥ 0}. We see that the dimension of Aff(S) is n− 1. Its center is y0.
Now we want to find the radius r of a sphere centered at y0 so that the sphere is inscribed
with S. So r is the distance from y0 to the center of a simplex which is of one dimension less
that that of S, say, formed in thee y2, ..., yn-space. So in the whole y space the coordinates
are given by (0, 1

n−1 , ...,
1

n−1 ). Hence

r2 = (n− 1)

(
1

n− 1
− 1

n

)2

+
1

n2
=

1

n(n− 1)
.

So the given problem examines the (n− 1)-dimensional sphere formed by the intersection of
the sphere given by ‖y − y0‖2 ≤ r2 with the hyperplane ety = 1, without the nonnegative
restrictions y ≥ 0, and looks for the minimal value of any coordinate in this region. In this
problem it is y1.

3. Consider the binary optimization problem: min{xTQx : xi ∈ {−1, 1}}, where Q ∈ Rn×n is
symmetric positive definite and x = (x1, ..., xn)t. Show that its Lagrange dual problem is in
the following form: max{trΛ : Q− Λ ≥ 0}, where Λ is a diagonal matrix.

Solution. Since xi ∈ {−1, 1} is equivalent to x2i − 1 = 0, the optimization problem at hand
can be formulated as min{xTQx : x2i = 1}. Introduce the Lagrange multiplier vector λ ∈ Rn
and let Λ = diag(λ). Now the Lagrange function is

L(x, λ) = xtQx+

n∑
i=1

λi(1− x2i ) = xtQx− xtΛx+ trΛ = xt(Q− Λ)x+ trΛ.

Note that L(x, λ) ≥ trΛ if Q− Λ ≥ 0. So the dual problem is

max{trΛ : Q− Λ ≥ 0}.

4. Usw Phase I of the simplex method to determine whether the following system of equations
has a nonnegative solution.

4x1 + 5x2 + x3 + 2x4 = 0, 3x1 + 3x2 + x3 + x4 = 1

Find one such solution if it exists

Solution. Introduce two artificial variables x5 and x6 (nonnegative) and minimize x5 + x6.
Let x = (x1, ..., x6)t. The Simplex Phase I problem is

min
{

(0, 0, 0, 0, 1, 1)x :
(

4 5 1 2 1 0
3 3 1 1 0 1

)
x =

(
0
1

)}
or

4 5 1 2 1 0 0
3 3 1 1 0 1 1
0 0 0 0 1 1 0

Suitable basic variables are x5, x6 and put it in the standard form

4 5 1 2 1 0 0
3 3 1 1 0 1 1
−7 −8 −2 −3 0 0 −1

Now choose x3 as basic variable we get a new tableau

4 5 1 2 1 0 0
−1 −2 0 −1 −1 1 1
1 2 0 1 3 0 −1

We see that all reduced costs are ≥ 0, implying that we reach the optimum, which is achieved
at x6 = 1 and the other variables are 0. So minx5 + x6 = 1, that is the original system does
not have a solution.

5. Formulate the minimization problem Minimize ‖Ax − b‖∞ (`∞-norm approximation) as an
LP problem. Explain in detail the relation between the optimal solution and the solution of
its equivalent LP.
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Solution. It is equivalent to the LP

min{y : Ax− b ≤ ye,Ax− b ≥ −ye}

in the variables x, y, where e is an all 1 vector. Now we show the equivalence. Assume x is
fixed in this problem, and we optmized only over y. The constraints say that −y ≤ atkx−bk ≤
y, for each k, i.e., y ≥ |atkx− bk|. Then y ≥ maxk |atx− b| = ‖Ax− b‖∞. It says the optimal
value of the LP is ‖Ax− b‖∞ if x is fixed. Hence optimizing over x and y at the same time
is equivalent to the original problem.

6. Let f : Rn → R be differentiable at x and let the vectors d1, ..., dn in Rn be linearly indepen-
dent. Assume that the minimum of f(x + λdj) over λ ∈ R occurs at λ = 0 for j = 1, ..., n.
Show that ∇f(x) = 0. Does this imply that f has a local minimum at x?

Solution. Since the minimum of f(x+ λdj) over λ ∈ R attained at λ = 0 for j = 1, ..., n, we
have that

d

dλ
f(x+ λdj)

∣∣
λ=0

= 〈∇f(x), dj〉, ∀j = 1, ..., n,

i.e.this homogeneous system of linear equations (for ∇f(x)) with the coefficient matrix A
with dtj as rows. Now d1, ..., dn are linearly independent, i.e. it has a unique solution which
is trivial. Hence ∇f(x) = 0. However this does not imply that f has a local minimum at x.
For example Figure 4.1 (BSS, p. 172) with x = (0, 0), d1 = (1, 0), and d2 = (0, 1).

7. Assume xi > 0, i = 1, ..., n. Let A = x1+···+xn

n , and G = (x1 · ... · xn)
1
n .

(i) Show, using the theory developed in this course, G(x) ≤ A(x)

(ii) Justify if the set {x ∈ Rn++ : G(x) ≥ A(x)} is convex or not. Is this set a cone if if we

define 0
1
n = 0?

Solution. We show that 1
n (log x1 + · · · log xn) ≤ log x1+···+xn

n . Now log cot is a concave

function so the inequality follows from Jensen’s inequality with λ1 = ... = λn = 1
n .

Since A(x) is convex and −G(x) (See lecture notes) is convex, the function A(x)−G(x) is a
convex function. Now the set is a level set of a convex function, so it is convex. Indeed this is
a convex cone because for anly λ ≥ 0 A(λx)−G(λx) = A(λx)−G(λx) = λ(A(x)−G(x)) ≤ 0.

8. In line search to find optimal solution to nonlinear optimization problems we often need to
solve the the following optimization problem

min{‖ − ∇f(x)− d‖2 : A1d = 0},

where A1 is a ν × n matrix with rank ν and x is fixed.

(i) Find the optimal solution d̄ is an optimal solution without using the KKT conditions
or Lagrange relaxation.

(ii) Solve d̄ from the KKT system.

(iii) Find d̄ in case ∇f(x) = (2,−3, 3)t and A1 =
(

2 2 −3
2 1 2

)
.

Solution. By the projection theorem we know that d̄ is optimal if and only if d̄ is a projection
of −∇f(x) onto the nullspace of A1. So d̄ = −(I − At1(A1A

t
1)−1A1)∇f(x). This can be

obtained by the KTT system: −∇f(x) = d̄−At1u,A1d̄ = 0 by multiplying the first equation
by A1 together with the second equation and A1 has full row rank. A straightforward
computation gives d = (−266, 380, 76)t/153.
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