STOCKHOLM UNIVERSITY
Department of Mathematics
Examiner: Salvador Rodríguez-López
MM5021-Foundations of Analysis

Final Written Exam
13 January, 2022
09:00-14:00

Please READ CAREFULLY the general instructions:

- During the exam you CAN NOT use any textbook, class notes, or any other supporting material.
- Calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. JUSTIFY your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).

1. (a) $[\mathbf{1} \mathbf{p t}]$ Define the notion of complete metric space.
(b) [2pt] Show that if (X, d) is a complete metric space, and $E \subset X$ is a closed set, then E is complete as a metric space with the metric induced by d.
(c) $[\mathbf{2 p t}]$ Suppose that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are two metric spaces such that $\left(X, d_{X}\right)$ is complete. Prove that if E is a closed set in X and $f: E \rightarrow Y$ is continuous such that

$$
d_{Y}(f(x), f(y)) \geq d_{X}(x, y)
$$

for all $x, y \in E$, then $f(E)$ is closed in Y.
2. (a) [$\mathbf{1 p t}$] Define what it means to say that a function is Riemann-Stieltjes integrable over an interval $[a, b]$ with respect to a monotonically increasing function α.
(b) [2pt] Let $f:[a, b] \rightarrow \mathbb{R}$ be a monotonic function, and α an increasing continuous function defined on the same interval. Prove that $f \in \mathscr{R}(\alpha)$ over the interval $[a, b]$.
(c) $[\mathbf{2 p t}]$ Argue why the following limit exists, and calculate its value

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sin \left(\frac{k \pi}{2 n}\right)}{n}
$$

3. (a) [1pt] Define what it means that a sequence of complex-valued functions defined on a metric space X converges uniformly on X to a function.
(b) [2pt] For all $n \geq 1$ define $f_{n}(x)=(n+1) x^{n}(1-x)$ for $x \in[0,1]$. Show that the sequence converges pointwise to 0 . Does it converge uniformly?
(c) $[\mathbf{2 p t}]$ Consider the series of functions given by

$$
\sum_{n \geq 1} \frac{(-1)^{n}}{n^{3}} \sin (2 \pi n x)
$$

Show that it is continuous and differentiable on \mathbb{R}, and such that f^{\prime} is also continuous on \mathbb{R}. Argument fully your answer.
4. Determine which of the following statements are true, and which are false. Explain your reasoning, by giving a proof or a counterexample to each statement. Each answer is graded over one point.
i. If a set is not uncountable, then it is countable.
ii. Let $\left(a_{k}\right)_{k}$ be a sequence of complex numbers. If the power series given by $\sum_{k \geq 0} a_{k} z^{k}$, converges for $z=2$, it also converges for $z=1-i$.
iii. If $\left\{V_{\alpha}\right\}_{\alpha \in I}$ is an finite family of open sets in a metric space, then $\cap_{\alpha} V_{\alpha}$ is open.
iv. Given $f(x)=1 /\left(1+x^{2}\right)$ defined for $x \in \mathbb{R}$, it is satisfied that for every compact set $K \subset \mathbb{R}, f^{-1}(K)$ is a compact set.
v. The function $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0 & , \text { if }(x, y)=(0,0)\end{array} \quad\right.$ is differentiable on \mathbb{R}^{2}.

1) a) see the coursebook
b) See the coursebook
c) We want to see that $f(E) \stackrel{?}{=} \overline{f(E)}$ and we know that $\overline{f(E)}=f(E) \cup f(E)^{\prime}$.
So ct seeftices 6 show that for all

$$
y \in f(E)^{\prime} \text { then } \exists x \in E: f(x)=y \text {. }
$$

If $y \in f(E)^{\prime}$, there exists $\left(x_{n}\right)_{n} x_{n} x_{n} \in E \quad \forall n \geqslant 1$ sech that $\lim _{n} f\left(x_{n}\right)=y$.
This is because, by definition, $\forall n \geqslant 1$

$$
\begin{aligned}
& \exists y_{n} \in f(E):\left(\text { for which } \exists x_{n} \in E: \quad f\left(x_{n}\right)=y_{n}\right) \\
& \text { with } y_{n} \neq y \quad: d\left(y_{n}, y\right)<\frac{1}{n} .
\end{aligned}
$$

In particular $\left(f\left(x_{n}\right)\right)_{n}$ is Cauchy in Y.
By the cessumption:

$$
d(f(x), f(y)) \geqslant 2 d(x, y) \text {, }
$$

it Jollows that $\left(x_{n}\right)_{n}$ is laucly in E
Since E is complete, $\exists x \in E: \lim _{n} x_{n}=x$.
By continuity of fr $y=\lim _{n} f\left(x_{n}\right)=f(x)$. Hence $y \in f(E)$.
2) al See the coursebook
b) See the coursebook
c) Let $f:[0,1] \rightarrow \mathbb{R}$

$$
x \longmapsto f(x)=\sin \left(\frac{\pi}{2} x\right)
$$

Noble that for $x \in[0,1]$, the function f is strictly increasing. By (b), it's then Riemann integrable on [011]. This yields in particular that if $P=\left\{\frac{k}{n}\right\}_{k=0, \ldots, n}$ is a partition of [0,1]. we have that.

$$
\begin{aligned}
& L\left(P_{n} f\right)=\sum_{k=1}^{n} f\left(\frac{k-1}{n}\right) \cdot \frac{1}{n}=\sum_{k=1}^{n-1} \sin \left(\frac{k \pi}{2 n}\right) \cdot \frac{1}{n} \\
& u\left(P_{n} f\right)=\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \cdot \frac{1}{n}=\sum_{k=1}^{n} \sin (k \pi / n) \cdot \frac{1}{n} .
\end{aligned}
$$

and

$$
u\left(P_{n} f\right)-L\left(P_{n} f\right)=\frac{1}{n}
$$

Hence

$$
u\left(R_{n}, f\right)-\frac{1}{n} \leq \int_{a}^{3} f d x \leq u\left(D_{n}, f\right)
$$

which yields

$$
\left|\int_{0}^{1} f d x-u\left(f_{n} \cdot f\right)\right| \leq \frac{1}{n}
$$

It follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} u\left(\theta_{n} \cdot f\right) & =\int_{0}^{1} f(x) d x=\int_{0}^{1} \sin \left(\frac{x \pi}{2}\right) d x \\
& =\frac{-2}{\pi}[\cos (x \pi / 2)]_{0}^{1}=\frac{2}{\pi}
\end{aligned}
$$

3) a) See the coursebook
b). Note that for all $n \geqslant 1 \quad f_{n}(0)=f_{n}(1)=0$.

Fr all $0<x<1$

$$
f_{n}(x)\left|=|x|^{n}(n+1)(1-x)\right.
$$

$$
\leq(n+1) x^{n},
$$

which yields that $\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad f x \in[0, c]$.
Note that

$$
\begin{aligned}
f_{n}^{\prime}(n) & =n(n+1) x^{n-1}(1-x)-\left(n+1 x^{n}\right. \\
& =(n+1) x^{n-1}(n-n x-x) .
\end{aligned}
$$

So Au has a masinue at

$$
x_{n}=\frac{n}{n+1} .
$$

In that case

$$
\begin{aligned}
f_{n}\left(\frac{n}{n+1}\right) & =(n+1) \frac{n^{n}}{(n+1)^{n}}\left(1-\frac{n}{n+1}\right) \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
\end{aligned}
$$

80

$$
\left\|f_{n}\right\|_{\infty}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \xrightarrow[n \rightarrow \infty]{ } \frac{1}{e}
$$

Then. fucloes not converge umformely to 0 .
b) Define the formal series

$$
f(x)=\sum_{n \geqslant 1} \frac{(-1)^{n}}{n^{3}} \sin (2 \pi n x)-\text { Let } a<b . b \in \mathbb{R} .
$$

Let $S_{N}(x)=\sum_{n=1}^{N} \frac{(-1)^{4}}{n^{3}} \sin (2 \pi n x)$, for $N \geqslant 1$.
Note that S_{N} is coninnous and differentiable in \mathbb{R}, loo being a finite sum of sech functions.
Moreover

$$
S_{N}^{\prime}(x)=2 \pi \sum_{n \geqslant 1}^{N} \frac{(-1)^{n}}{n^{2}} \cos (2 \pi k x) \in G[a, b] .
$$

Note that foo all $n \geq 1$ and $x \in \mathbb{R}$

$$
\left|\frac{G 1)^{4} \cos (2 \pi n 8}{n^{2}}\right|+\left|\frac{(-1)^{4}}{n^{3}} \sin (2+n k)\right| \leqslant \frac{1}{n^{2}}
$$

and the series $\sum_{n \geqslant 1} \frac{1}{n^{2}}$ converges.
By the r-test of Weierstrass

$$
\begin{aligned}
& s_{N}^{\prime} \rightarrow \sum \frac{(-1)^{4} \cos (2 \pi k x)=g}{k^{2}} \text { as N } \rightarrow+\infty \\
& s_{v} \rightarrow f,
\end{aligned}
$$

Hence, we have that f is differentiable in (a, b) and $f^{\prime}(x)=\sum \frac{(-1)^{h}}{h^{2}} \cos (2 \pi h x)$ Bor all $x \in(a, b)$, and $g \in l[a, b]$.
since a, b are arbitrary, we conclude that $f \in C^{\prime}(\mathbb{R})$ and $f^{\prime} \in \ell_{e}(\mathbb{R})$
4) i) False

The et $E=\{1\} \subset \mathbb{R}$ is finite, and neither countable no uncountable
ii) tue (Seen similar in the course, so we anat the details here.
Elul: Use of the root criteria.
iii) true

Gen $y \in \bigcap_{\alpha} V_{\alpha}$, for all $\alpha \quad y \in V_{d}$.
Since V_{α} is open, $\exists r_{\alpha}>0$: $B\left(g, r_{\alpha}\right) \subset V_{\alpha}$. Define $r=$ min $r_{\alpha}>0$ (there is a fixate number of then). Then

$$
B\left(y_{c} t\right) \subset \bigcap_{\alpha} V_{d} \text {. }
$$

v) False: $f^{\prime}([0,1])=\mathbb{R}$.
v) False

Note that

$$
\lim _{h \rightarrow 0} f(h, h)=\lim _{h \rightarrow 0} \frac{h^{2}}{2 h^{2}}=\frac{1}{2} \neq f(0,0)
$$

So f is not continuores at $(0,0)$
This implies that f can't be differentials at (av), and then it's not on \mathbb{R}^{2}.

