STOCKHOLMS UNIVERSITET

Matematiska institutionen Erik Palmgren Jacopo Emmenegger Solutions to Written Exam Logic II Fall term 2018 2019-02-27

Hints to solutions to written exam Logic II, 2019-02-27

- 1. For y > 0, use bounded search to find smallest q(x, y) such that $\dot{x-q}(x, y)y < y$. Then $r(x, y) = \dot{x-q}(x, y)y$.
- 2. (a) Undecidable. Use Rice's theorem.
 - (b) Undecidable. Use Rice's theorem.
 - (c) Decidable. See simulation of Turing machines by partial recursive functions.
- 3. This is a contraposition to the well-known result that if a first-order theory has arbitrary large finite models, then it has only infinite models. See textbook.
- 4. The main forms of AC can be found in the textbook. First show that AC is equivalent to (AC'): for every surjective function $f: A \to B$, there is $g: B \to A$ such that $fg = id_B$.
 - •••
- 5. (a) $|S_1| = 2^{2^{\aleph_0}}$
 - (b) $|S_2| = 2^{\aleph_0}$ see solution to corresponding problem 2019-01-16.
 - (c) $S_3 \subseteq S_1$ which gives $|S_3| \leq |S_1| = 2^{2^{\aleph_0}}$. To show $2^{2^{\aleph_0}} \leq |S_3|$, it suffices to construct for each $M \subseteq (0, +\infty)$, a bijection f_M : $\mathbb{R} \to \mathbb{R}$ such that, if $f_M = f_{M'}$, then M = M'. This gives an injection $\mathcal{P}(0, +\infty) \to S_3$, which shows that $|\mathcal{P}(0, +\infty)| \leq |S_3|$. Now $\mathbb{R} \cong (0, +\infty)$ via the bijection $x \mapsto \exp(x)$, so $|\mathcal{P}(0, +\infty)| =$ $|\mathcal{P}(\mathbb{R})| = 2^{2^{\aleph_0}}$. Such functions f_M can be constructed as

$$f_M(x) = \begin{cases} 0 & \text{if } x = 0\\ x & \text{if } x \in M \text{ or } -x \in M\\ -x & \text{if } x \notin M \text{ or } -x \notin M \end{cases}$$

- 6. A suitable partial function is $f(x) \simeq \phi_x(x) + 1$. Then use the enumeration theorem to show that it cannot be extended to a total recursive function.
- 7. This equivalence can be found in the textbook.

8. The first part follows from Gödel's incompleteness theorem noticing that the axiom set $PA \cup T$ is recursive, if T is finite. As for the second part, a counterexample is $T = Th(\mathbb{N}) \supseteq PA$, which is infinite, complete and consistent (but not recursive).