1.
$$\varphi := (P_1 \cup P_2) \hookrightarrow P_3$$

 $\psi := P_3 \rightarrow P_1$
Define V_1 by $P_1^{V_1} = 0$, $P_2^{V_1} = 1$, $P_3^{V_1} = 1$.
Then $E(\varphi I^{V_1} = 1)$, $E(\varphi I^{V_1} = 0)$, as required.
Define V_2 by $P_1^{V_1} = 0$, $P_2^{V_1} = 0$, $P_3^{V_1} = 1$.
Then $E(\varphi I^{V_1} = 0)$, $E(\varphi I^{V_1} = 1)$, as required.
2. (a) $P_1 P_2$, $P_1 \rightarrow P_3$, $P_2 \rightarrow P_4$ $\vdash P_3 \wedge P_4$:

$$\frac{P_1 \wedge P_2}{P_3} \xrightarrow{P_1} \xrightarrow{P_2} A \in \frac{P_2 \rightarrow P_4}{P_2} \xrightarrow{P_4} A = \frac{P_1 \wedge P_2}{P_3 \wedge P_4}$$

(b) $P_1 \Leftrightarrow P_2$, $P_1 \rightarrow P_3$, $P_2 \rightarrow P_4$ if $P_3 \Leftrightarrow P_4$; His is not derivable (by soundness) since a counterwedel is given by $P_1' = P_2' = P_3' = 0$, $P_4' = 1$.

und'alrayed assumption; here x, occurs free in the assumption P, (01,), which is undischarged at

the point where
$$\forall I$$
 is used (though it is discharged
later by $\exists E$).
(Another error is that if the derivation were
valid, it would show ($\exists x, P_{i}(a_{1})$) $\mapsto (\forall x, P_{i}(a_{1}))$,
not $\mapsto (\exists x, P_{i}(a_{1})) \Rightarrow (\forall a, P_{i}(a_{1}))$ as the quarking
subjects.)
(b) If ($\exists x, P_{i}(a_{1})$) $\Rightarrow (\forall a, (P_{i}(a_{1})))$ were derivable without
assumptions, it would be a tanktopy, by soundness. But a
constermodal is given by the shucture (N , even;).
(i.e. $[P_{i}(x_{i})] = \begin{cases} i \ x \ i \ constant} \end{cases}$
since there exist error naturals but not all netter are error.
(a) This may full taking e.g. $s = x_{1}, t = x_{2},$
 R the studie (N ; even;) as above, with $\forall (x_{1}) = 0$,
 $\forall (x_{1}) = 2$.
Then $EP_{i}(x_{1}) \Rightarrow P_{i}(x_{1})P_{i}(t)$, but $[x_{1}, \pm x_{2}] = 0$.
(b) $s = t \mapsto P_{i}(s) \Rightarrow P_{i}(t)$. $(P_{i}(s))^{-1} T_{i}$
 $\frac{P_{i}(s) \Rightarrow P_{i}(s)}{P_{i}(s) \Rightarrow P_{i}(s)}$ repl
 $\frac{S = t}{P_{i}(s) \Rightarrow P_{i}(s)}$ repl

7. Take 8 to be "
$$\exists x_3 f_4(x_3, x_2) \doteq x_1$$
".
This will hold in N, v iff $\exists k \in \mathbb{N}$, $k v(x_2) = v(x_1)$,
i.e. iff $v(x_2)(v(x_1))$, as required.

8. (a) A typical instance A regulacement is

$$\frac{s \div t}{6 \operatorname{GL}/2n} \operatorname{usth} s, t \text{ for } n_{n}$$

$$\frac{s \div t}{6 \operatorname{GL}/2n} \operatorname{usth} s, t \text{ for } n_{n}$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{2}} \operatorname{unit} t \operatorname{unit$$

This ensures that the given freezess conditions are satisfied, & Anot $= \gamma \rightarrow \gamma$ q[x tz/x;] (x ta/aj] = N[Spin] -> NEpin]. y[s/ni][t/nj] We're incluctively sliving: For every derivation D, (b) in any interp. A, v, if all arsin of D 2 is is hold, then the conclusion of D holds. I sound" Suppose \mathcal{D} concludes with "=-elim": \mathcal{D} $\left\{ \begin{array}{c} \vdots \\ \vdots \\ s=t \end{array} \right\} \mathcal{D}_{1}$ $\left\{ \begin{array}{c} \vdots \\ g(s_{h}) f(s_{h}) f(s_$ where not is not free in any ass'n of P2. Assume as IH that D,, D, are sound. Let A, v be any interpin in which all assins or 29 hold; we must show q[s/n;][t/aj] lists flore.

Since = elsin dischoore us assumptions, all assime of

$$D$$
, huld is A, v , so by the IH for D ,
 $I, v \models s=t$, i.e. $Is I' = I \notin I'$.
By the subditution lemma, k the given free-var. conditions,
 $I \downarrow (s/n; I \notin /n;)I' = I \downarrow I' (n; \mapsto I \in I') O \downarrow \mapsto E \notin I'')$
 $= I \downarrow I' (n; \mapsto O \in I' \land I \to O \cap I')$
(since use are giving $n; v;$ the same value, we
can see this as an evaluation of $4 (Iv \restriction /v;) O \restriction /n; /v;$).
With w for $V [n \restriction \mapsto E \in I']$.
Then $(n \restriction I \in I'' \land N; j \mapsto C \in I'']$ and $w (n; \mapsto O \in I'' \land C \mid j \mapsto O \in I''$
so $V [v; \mapsto C \in I'' \land N; j \mapsto C \in I'']$ and $w (n; \mapsto O \in I' \land C \mid j \mapsto O \in I'')$
so $(vince nh not frain \psi)$,
 $I \downarrow I' (n; \mapsto O \in I'') = I \downarrow I''$
 $= [\downarrow (C n \restriction /n;] (v \restriction /n;] I''')$

So never by the Itt for D2, it suffices to show all assumptions of P2 hold under w. We know they hold under v, since they are assumptions of D; & since nh is not free in them, and v and wagnes on all vans except possibly N/2, they nust also hold under v. So une are done.

10. Call the given Anctues N, R. (a) Note that N has a least element, while R does not. So the fimula $\exists n_1 \forall n_2 P_1(n_1, n_2)$ holde in Nout not in R. (b) y pre expresses the axioms of a pre-order: in a structure A, yore will hold just if P, is a reflexive, transitive relation. So me mant a finnela le copressing some property of N and R that is not shared by all pre-orders, e.g. the fact that they are total orders. So take of to expans the totality condition, $\gamma_{i} = \mathcal{P}(n_{1}, n_{2}) \mathcal{P}(n_{2}, \chi_{1})$

This holds in N and R since, as noted, they're total. But any non-total partial order e.g. $(\mathcal{P}(N), \underline{c})$ - viewed as a structure, < P(N); <; >, gives an interpretation in which your holds and I fails. (Failure of totality in P(N) is withersed by C.g. E13, E23, since E13, # E23, E23, EE13.) By soundness, Hirs conntermodel shows yore HV.

11. Can Suppose 5, a are ded, closed; ue will show that MA also is. If JALY, then since ond so, we have THQ, so by deductive clorure, 465; and similarly, yed. So $\varphi \in \Gamma \cap \Delta$, as desired. (b) Let V, V2 be two different intervetations, sur utile $P_1'=1$, $P_1'^2=0$. Then the theories $Th(V_i) = \{\varphi \mid V_i \models \varphi\}$ one complete (as me saw in class): for any q, if Eq] "=1 then yETU(Vi) and so $Tu(V_i) \vdash \varphi$, obhennie if Cy I'= O then E-y I'=1 & so $TU(V_i) \vdash \neg \varphi$.

But Tu(V1) Tu(V2) is not complete:
since Tu(V1) TU(V2)
$$\leq$$
 Tu(V1),
we have $V_1 \neq$ Tu(V1) TU(V2), for i=12,
so by counduless, Tu(V1) TU(V2) H P1
(as $V_2 \neq P_1$)
& also Tu(V1) TU(V2) H P1
(as $V_1 \neq P_1$).
(c) The maximal theory Form (all formulas)
is clearly complete (for any p, Form I-4
and Form I-74)
& deductively closed (for any p, y ofform)
but is not consistent (since $1 \leq Form$)
so is not wax. Cons.