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Instructions: Work alone. You are not allowed to use the textbook and the class notes. You can
quote results that you learned in the class. Be sure to state clearly what results you are using.

Justify all your answers with a proof or a counterexample. A simple Yes or No answer, even if correct,
may get partial or no credit.

Problems have multiple parts. In some cases, later parts depend on earlier ones. Even if you could not
do the earlier parts, you are allowed to use the results of the earlier parts in the later parts.

1. Let τ be the following set of subsets of the real line R: A set U ⊂ R is in τ if and only if one of
the following conditions holds

1. U is empty,

2. 3 ∈ U .

You may take for granted that τ defines a topology on R. Throughout this problem, let R denote
the real line with the standard topology, and Rτ denote the real line with the topology τ . Remember
to justify your answers.

(a) [1 pt] Is Rτ compact?

Solution: No. For all 3 6= x ∈ R, let Ux = {3, x}. Then {Ux | x ∈ R \ {3}} is an open cover
of Rτ , that has no finite subcover. Indeed, it has no proper subcover.

(b) [2 pts] Is Rτ path-connected?

Solution: Yes. It is enough to show that for every x 6= 3, there is a path from 3 to x. By
composition of paths, it will follow that every two points can be connected by a path.

Let us define α : [0, 1]→ Rτ as follows

α(t) =

{
3 t ∈ [0, 1)
x t = 1

We need to check that α is continuous. Let U be an open set of Rτ . We need to prove that
α−1(U) is open in [0, 1]. If U is empty then it is clear. Suppose U is non-empty. Then 3 ∈ U .
If x /∈ U then α−1(U) = [0, 1). If x ∈ U then α−1(U) = [0, 1]. In all cases, α−1(U) is open.

(c) [1 pt] Is Rτ first-countable?

Solution: Yes. Every point x ∈ Rτ has a local basis consisting of a single open set: {3}∪{x}.
In particular, it has a countable local basis.

(d) [2 pts] Is Rτ second-countable?

Solution: No. I claim that every basis of Rτ must contain the set {3}∪{x}, for every x ∈ Rτ .
In particular every basis is uncountable. Indeed for every x, there has to be a basis element
containing x and contained in {3}∪{x}. But the only open set satisfying these two conditions
is {3} ∪ {x}.
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(e) [2 pts] Describe all the continuous maps Rτ → R.

Solution: I claim that a function f : Rτ → R. is continuous if and only if it is constant.
Proof: only the “only if” part need proof. Suppose f : Rτ → R is a non-constant map. Let
x = f(3). Since f is not constant, f−1(R \ {x}) is a non-empty subset of Rτ \ {3}. By the
definition of τ , such a set can not be open. But this means that f is not continuous.

2. Let f : X → Y be a map (it goes without saying that a ”map” is continuous). Recall that a
retraction of f is a map r : Y → X such that r ◦ f = 1X .

(a) [3 pts] Suppose f has a retraction, and Y is Hausdorff. Prove that that f(X) is a closed
subset of Y .

Solution: Define the map ∇ : Y → Y × Y by the formula ∇(y) = (y, f(r(y))). Let Y∆ ⊂
Y × Y be the diagonal. This means that Y∆ = {(y, y) ∈ Y × Y | y ∈ Y }. I claim that
f(X) = ∇−1(Y∆). Since Y is Hausdorff, Y∆ is a closed subset of Y ×Y , and the desired result
follows. It remains to prove the claim.

Suppose first that y ∈ f(X). This means that y = f(x) for some x ∈ X. Then

∇(y) = (y, f(r(y))) = (f(x), f(r(f(x)))) = (f(x), f(x)) ∈ Y∆,

and thus y ∈ ∇−1(Y∆). We have proved that f(X) ⊂ ∇−1(Y∆).

Now suppose that y ∈ ∇−1(Y∆). This means that y = f(r(y)), so y ∈ f(X). We proved that
∇−1(Y∆) ⊂ f(X).

(b) [2 pts] Under the same conditions as in part (a), prove that f is a closed map. Remember:
you are allowed to use the conclusion of part (a) even if you did not do part (a).

Solution: Let C ⊂ X be a closed subset. We need to prove that f(C) is a closed subset of
Y . I claim that f(C) = r−1(C)∩ f(X). Since r−1(C) is closed by continuity of r and f(X) is
closed by part (a), it follows that f(X) is closed. It remains to prove the claim.

Let us prove first that f(C) ⊂ r−1(C) ∩ f(X). We need to show that f(C) ⊂ r−1(C) and
f(C) ⊂ f(X). The first inclusion follows from the relation r(f(x)) = x and the second
inclusion follows from the fact that C ⊂ X. Now let us prove that r−1(C) ∩ f(X) ⊂ f(C).
Let y ∈ r−1(C) ∩ f(X). Then y = f(x) for some x ∈ X, and r(y) ∈ C, so r(f(x)) ∈ C. But
r(f(x)) = x, so x ∈ C and y = f(x) is in f(C).

(c) [1 pt] Show that if Y is not Hausdorff, then the conclusion of part (a) is not necessarily true.

Solution: Let Y be any set with at least two points, endowed with the trivial topology. Let
X ⊂ Y be a non-empty proper subspace. Then the inclusion has a retraction, but X is not a
closed subset of Y .

3. [4 pts] Let X be a space and A ⊂ X a subspace. Suppose C ⊂ X is a connected subspace,
such that C ∩ A and C ∩ (X \ A) are both non-empty. Prove that C ∩ ∂A is non-empty. Here
∂A = Ā ∩X \ A is the boundary of A.

Solution: I claim that C is not contained in int(A) ∪ int(X \ A). Indeed, if C ⊂ int(A), this
contradicts the assumption that C ∩ X \ A is non-empty. Similarly, if C ⊂ int(X \ A), this
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contradicts that X ∩ A is non-empty. Finally, if C ⊂ int(A) ∪ int(X \ A), but is not contained in
either of the two parts of the union, then C ∩ int(A) and C ∩ int(X \ A) would give a separation
of C, contradicting the assumption that C is connected.

We have shown that C ∩ (X \ (int(A) ∪ int(X \ A))) is non-empty. But X \ (int(A) ∪ int(X \ A))
is precisely ∂A. Indeed

X \ (int(A) ∪ int(X \ A)) = (X \ int(A)) ∩ (X \ int(X \ A)) = X \ A ∩ Ā.

4. Let X be a locally compact Hausdorff space.

(a) [2 pts] Prove that a closed subset of X is locally compact.

Solution: Let C be a closed subset of X, and x ∈ C. Since X is locally compact, there exists
an open neighborhood U of x in X, such that Ū is compact. But then U ∩ C is an open
neighborhood of x in C, and the closure of U ∩ C in C is Ū ∩ C, which is a closed subset of
Ū , so is compact. We have shown that C is locally compact.

(b) [3 pts] Prove that an open subset of X is locally compact.

Solution: Let W be an open subset of X, and x ∈ W . We want to prove that there exists an
open neighborhood V of x whose closure (taken in X) is contained in W , and is compact. As
before, we can find a neighborhood x ∈ U ⊂ X, such that Ū is compact. We use the notation
Ū to denote closure in X. The problem is that we do not know that Ū , or even just U , is
contained in W .

Let K = Ū \W . Then K is a closed subset of Ū , and therefore is compact. Furtheremore,
x /∈ K, since x ∈ W . It follows that one can find disjoint open subsets P and Q of X, such
that K ⊂ P and x ∈ Q. Let V = U ∩ Q. We claim that V is the desired neighborhood.
Indeed, U and Q both contain x, so V contains x. U and Q are open, so V is open. The
closure of V is contained in the closure of U , and therefore is compact. Finally, the closure
of V is disjoint from K, because K ⊂ P and P is disjoint from Q, so K is disjoint from the
closure of Q. It follows that V̄ ⊂ Ū \K = Ū ∩W , so V̄ ⊂ W , and we are done.

(c) [1 pt] Show an example of a subspace of a locally compact Hausdorff space that is not locally
compact.

Solution: The line R is locally compact, but the subspace Q consisting of the rational numbers
is not locally compact. Indeed, it is not hard to show that no subset of Q that contains a non-
empty open interval is compact, and therefore no non-empty open subset of Q has a compact
closure in Q.

5. (a) [2 pts] Prove that every map from RP 2 to S1 is homotopic to a constant map.

Solution: The fundamental group of RP 2 is Z/2 and the fundamental group of S1 is Z. It
follows that the only homomorphism from π1(RP 2) to π1(S1) is the zero homomorphism. It
follows that any map f : RP 2 → S1 factors through the universal cover of S1. But the universal
cover of S1 is R, which is contractible. It follows that every map RP 2 → S1 is null-homotopic.
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(b) [2 pts] Give an example of two pointed spaces X and Y , and two pointed maps f, g : X → Y ,
such that f and g are homotopic, but not pointed homotopic.

Solution: The fundamental group of S1 ∨ S1 is the free group on two generators. Let’s call
them x and y. Let f, g : S1 → S1∨S1 be pointed maps representing the elements x and y−1xy
in π1(S1 ∨ S1). Then f and g are not homotopic as pointed maps, because they represent
different elements of the fundamental group. But they represent conjugate elements of the
fundamental group, so they are “freely” homotopic.

6. [3 pts] Let X ⊂ R3 be the space consisting of the four points (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), and
the six line segments connecting them. In other words, X consists of the edges of a tetrahedron.
What is the fundamental group of X?

Solution: X is a graph. The complement of a spanning tree consists of three edges. In other
words, X is obtained by attaching three one-dimensional cells to a contractible space. It follows
that π1(X) is the free group on three generators. You can also prove it using the van Kampen
theorem (you may need to apply it twice).


