Algebraic Topology, VT22. Homework Assignment 5. Due Thursday February 24.

- (1) (5 points) Let C_* be a chain complex and let $A_* \subseteq C_*$ be a subcomplex. Suppose that $S: C_* \to C_*$ is a chain map with the following properties:
 - (a) For every $x \in C_*$, there is a non-negative integer m such that $S^m(x) \in A_*$.
 - (b) There is a chain homotopy $T: C_* \to C_{*+1}$ from the identity to S,

$$1 - S = \partial T + T\partial.$$

(c) Both S and T preserve A_* .

Prove that the homomorphism $H_*(A) \to H_*(C)$ induced by the inclusion is an isomorphism.

(2) (5 points) Recall the definition of the standard n-simplex:

$$\Delta^n = \{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, \ t_0 + \dots + t_n = 1 \}.$$

For each permutation $\omega = (\omega_0, \omega_1, \dots, \omega_n)$ of $0, 1, \dots, n$, define

$$\Delta_{\omega}^{n} = \{(t_0, \dots, t_n) \in \Delta^n \mid t_{\omega_0} \le \dots \le t_{\omega_n}\}.$$

- (a) Show that Δ^n is the union of all subspaces of the form Δ^n_{ω} . Draw the picture for n=2.
- (b) Find an explicit affine embedding

$$f_{\omega} : \Delta^n \to \Delta^n$$

such that $\operatorname{im}(f_{\omega}) = \Delta_{\omega}^{n}$. Use this to argue that Δ_{ω}^{n} is homeomorphic to Δ^{n} .

(c) (Bonus problem) Prove that for suitable choices of f_{ω} as above, the barycentric subdivision operator $S \colon C_*(X) \to C_*(X)$ is given by

$$S(\sigma) = \sum_{\omega} (-1)^{\omega} \sigma \circ f_{\omega}$$

for singular simplices $\sigma \colon \Delta^n \to X$. The sum is over all permutations ω and $(-1)^{\omega}$ denotes the sign of the permutation.