Algebraic Topology, VT22. Homework Assignment 7. Due Thursday March 10.

- (1) (5 points) Compute the degrees of the following self-maps of S^n :
 - (a) Reflection in a line through the origin.
 - (b) Rotation by the angle π in a coordinate plane.
 - (c) The map $(x_0, \ldots, x_n) \mapsto (x_{\omega_0}, \ldots, x_{\omega_n})$, where ω is a permutation.
 - (d) (Bonus problem) The map $x \mapsto Ax$, where A is an orthogonal $(n+1) \times (n+1)$ -matrix.
- (2) (5 points) Let X be cell complex.
 - (a) Following Hatcher's proof of Theorem 2.35, show that an isomorphism

$$\phi_X \colon H_n(X) \to H_n^{CW}(X)$$

is given explicitly by

$$\phi_X(x) = [j_n(y)],$$

where $y \in H_n(X^n)$ is any homology class that maps to x under the homomorphism $H_n(X^n) \to H_n(X)$ and where $j_n \colon H_n(X^n) \to H_n(X^n, X^{n-1})$ is the canonical homomorphism.

(b) A map $f: X \to Y$ between cell complexes is called cellular if $f(X^n) \subseteq Y^n$ for all n. Show that a cellular map induces a homomorphism

$$f_*^{CW}\colon H_n^{CW}(X)\to H_n^{CW}(Y)$$

for all n, and show that the diagram

$$H_n^{CW}(X) \xrightarrow{f_*^{CW}} H_n^{CW}(Y)$$

$$\downarrow^{\phi_X} \qquad \qquad \downarrow^{\phi_Y}$$

$$H_n(X) \xrightarrow{f_*} H_n(Y)$$

is commutative.